A high thrust ratio in a single chamber dual thrust motor is required to reach a peak velocity very quickly. To achieve a high thrust ratio in a single chamber dual thrust motor, a composite propellant grain, which acts both as booster and sustainer, based on HTPB/AP/Al (84% solid loading) with low aluminum content and having a burning rate of 25±0.5 mm/s at 7 MPa, was successfully developed. This was studied for viscosity build-up, mechanical and ballistic properties, followed by casting and curing as a single type propellant grain. The high burning surface area was created by making grooves of 3 mm width and 60 mm depth over the surface of the nozzle side of the grain while casting and a prototype, thus obtained, was static tested. The data revealed that a grain with one groove demonstrated a thrust ratio of 8, while two grooves, realized a thrust ratio of 30. The experimental thrust ratio values achieved are also in agreement with the predicted values of the thrust ratio of the same composition.
High burning rate propellant compositions are generally used in gas generators to eject missile from canister. Because of high burning rate, pressure index of the composition increases during burning. To reduce the pressure index, a high burning rate composite propellant formulations (~20 mm/s) based on AP/HTPB/Al have been prepared by incorporating TATB and studied in detail for viscosity build-up, thermal and mechanical properties, sensitivity as well as burning rate and pressure index (n). The data indicate that there is a decrease in end of mix viscosity on increasing the percentage of TATB. The same trend was also observed with mechanical properties while significant improvement in overall thermal stability was clearly observed. The sensitivity data indicate that impact and friction values show decreasing trend infer better safe to handle. The burn rate data reveal that on addition of TATB from 0.5 to 2% decrease in burning rate was not observed while on addition of further TATB up to 5% and beyond this significant decrease in burning rate was observed. The data on pressure index (n) also reveal that TATB is very effective in reducing the 'n' value up to 2% and beyond this 'n' value increases close to standard composition. The data on 'n' value reveal that it reduces from 0.47 to that of standard composition to 0.36 for the compositions containing TATB up to 2.0% in the pressure range of 60-90 kg/cm2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.