Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The “Technological applicability card for coals” was used for this purpose [Sobolewski et al., 2012; 2013], in which the key parameters, important and additional ones affecting the gasification process were described.
PL
Metody służące do wizualizacji złożonych, wielowymiarowych danych poprzez transformację przestrzeni wielowymiarowej do dwuwymiarowej umożliwiają prezentację tych danych na ekranie komputera. Tym samym są przystępnym instrumentem analizy zbiorów danych, pozwalającym wykorzystać połączenie naszego wzroku z mocą naszej osobistej sieci neuronowej (mózgu) do wyodrębnienia z danych cech, których zauważenie przy pomocy innych metod może być bardzo trudne. W artykule zastosowano jedną z takich metod – skalowanie wielowymiarowe – w celu sprawdzenia, skuteczności tej metody do analizy próbek węgla ze względu na jego przydatność do procesu zgazowania w kotle fluidalnym. W tym celu pobrano próbki dwóch węgli, z KWK „Wieczorek” (węgiel typu 32) oraz ZG „Janina” (węgiel typu 31.2), które następnie miały być poddane testom pod względem ich przydatności do zgazowania. Każda z próbek została zbadana ze względu na cechy, których określone poziomy są kluczowe oraz wskazane w kontekście procesu zgazowania według „Karty przydatności węgli do zgazowania” (Sobolewski et al., 2012; 2013). Każdy z węgli został rozdzielony na osadzarce pierścieniowej (10 pierścieni, uziarnienie węgla 0-18 mm) w wyniku czego powstało pięć warstw (po 2 pierścienie każda). Następnie każda z warstw została rozsiana na 10 klas ziarnowych. Tak otrzymane produkty zostały poddane technicznej oraz chemicznej analizie (ogółem 50 próbek z ZG „Janina” oraz 49 próbek z KWK „Wieczorek” – klasa ziarnowa 16-18 mm w tej drugiej kopalni nie została uzyskana i pomiar był niemożliwy do zrealizowania. Tym samym otrzymano takie parametry do analizy jak: zawartość siarki, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla organicznego, ciepło spalania oraz zawartość popiołu. W wyniku przeprowadzonych badań oraz porównania ich z wymogami prezentowanymi w „Karcie przydatności węgli do zgazowania” okazało się, że tylko 18 próbek spełnia wszystkie wymogi, z czego aż 17 pochodziło z KWK „Wieczorek”. Postanowiono poddać ocenie wszystkie próbki bardziej złożonej obserwacji – wielowymiarowej analizie danych za pomocą skalowania wielowymiarowego. W rozdziale 3 przedstawiono szczegółowo zastosowaną metodologię analizy wraz z opisem algorytmu. Następnie, w rozdziale 4 przedstawiono wyniki obserwacji przeprowadzonych za pomocą opracowanego w tym celu programu komputerowego, napisanego w języku C++. Rysunki 1-3 przedstawiają sytuację, gdzie dane reprezentujące próbki węgla mniej lub bardziej przydatne do zgazowania zaczynają tworzyć podgrupy. Proces grupowania został przedstawiony etapowo, tzn. rys. 1 prezentuje sytuację wyjściową, Rys. 2 sytuację przy bardzo małej wartości parametru ITER = 5, zaś Rys. 3 najlepszy możliwy widok, otrzymany przy wartości parametru ITER = 340. Widać na tym rysunku, że obrazy punktów reprezentujących próbki węgla bardziej oraz mniej podatnego na zgazowanie zajmują osobne podobszary. Widać, że na całym obszarze rysunku, podobszary te można łatwo od siebie odseparować. Przez to możemy na podstawie tego rysunku stwierdzić, że skalowanie wielowymiarowe pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego. Dzięki temu analizując następne, nieznane próbki możemy poprzez ich wizualizację zakwalifikować je do grupy bardziej podatnych na zgazowanie lub mniej podatnych na zgazowanie. Ważne jest to szczególnie dlatego, ponieważ w analizowanej sytuacji próbki węgla bardziej podatnego na zgazowanie zajmują wnętrze siedmiowymiarowego prostopadłościanu – co jest znacznym uproszczeniem. Wynika to bezpośrednio z faktu, iż przyjęte warunki określające przynależność do tej grupy („Karta przydatności Technologicznej węgla”) to proste nierówności przy pomocy których łatwo można sprawdzić taką przynależność. W rzeczywistości, może się jednak okazać, że obszar przynależności może mieć znacznie bardziej skomplikowany kształt. Wtedy na podstawie większej ilości próbek, których przynależność do klasy węgla bardziej podatnego na zgazowanie zostanie stwierdzona empirycznie, można będzie próbować przy pomocy skalowania wielowymiarowego uzyskać podział przestrzeni na obszary reprezentujące próbki węgla bardziej oraz mniej podatnego na zgazowanie. Rys. 4 przedstawia podobny podział, ale bez wzięcia pod uwagę parametru „zawartość chloru”. Również i w tym przypadku próbki węgla mniej lub bardziej podatnego na zgazowanie tworzą wyraźne podgrupy. Przy pominięciu parametru „zawartość chloru” już 78 próbek (37 z ZG „Janina” oraz 41 z KWK „Wieczorek”) z analizowanych 99-ciu spełniałoby wymogi zawarte w „Karcie przydatności węgla do zgazowania”. Rys. 5 przedstawia inne podejście do analizowanych próbek węgla. Tym razem za kryterium podziału przyjęto pochodzenie węgla z KWK „Wieczorek” lub ZG „Janina”, bez rozpatrywania ich w kontekście przydatności do zgazowania. Również i tym razem okazało się, że zastosowana metodologia pozwala stwierdzić możliwość efektywnego rozdzielenia, a tym samym prawidłowego rozpoznania analizowanych próbek węgla. Tym samym dowiedziono, że metoda skalowania wielowymiarowego może być bardzo przydatnym narzędziem podczas wieloparametrycznej analizy próbek różnego typu węgli.
EN
Methods serving to visualise multidimensional data through the transformation of multidimensional space into two-dimensional space, enable to present the multidimensional data on the computer screen. Thanks to this, qualitative analysis of this data can be performed in the most natural way for humans, through the sense of sight. An example of such a method of multidimensional data visualisation is PCA (principal component analysis) method. This method was used in this work to present and analyse a set of seven-dimensional data (selected seven properties) describing coal samples obtained from Janina and Wieczorek coal mines. Coal from these mines was previously subjected to separation by means of a laboratory ring jig, consisting of ten rings. With 5 layers of both types of coal (with 2 rings each) were obtained in this way. It was decided to check if the method of multidimensional data visualisation enables to divide the space of such divided samples into areas with different suitability for the fluidised gasification process. To that end, the card of technological suitability of coal was used (Sobolewski et al., 2012; 2013), in which key, relevant and additional parameters, having effect on the gasification process, were described. As a result of analyses, it was stated that effective determination of coal samples suitability for the on-surface gasification process in a fluidised reactor is possible. The PCA method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.
PL
Proces zgazowania węgla jest jedną z technologii, które zyskują coraz szerszą uwagę wśród technologów zajmujących się jego przeróbką i utylizacją. Ze względu na typ zgazowania wyróżnia się dwa główne sposoby: zgazowanie naziemne i podziemne. Każdy z tych typów można jednak przeprowadzić za pomocą różnych technologii. W przypadku zgazowania naziemnego, jedną z takich technologii jest zgazowanie w reaktorze fluidalnym. Do tego typu zgazowania zostały opracowane wytyczne w ramach projektu NCBiR nr 23.23.100.8498/R34 pt. „Opracowanie technologii zgazowania węgla dla wysokoefektywnej produkcji paliw i energii” w ramach strategicznego programu badań naukowych i prac rozwojowych pt. „Zaawansowane technologie pozyskiwania energii” (Marciniak-Kowalska, 2011-12; Sobolewski et al., 2012; 2013; Strugała et al., 2011; 2012). Autorzy wybrali główne z tych wytycznych, dotyczących zalecanych poziomów określonych cech węgla. W celu zbadania węgla pod kątem ich przydatności do zgazowania pobrano próbki dwóch węgli: pochodzących z Zakładu Górniczego Janina oraz z Kopalni Węgla Kamiennego Wieczorek. Każdy z tych węgli został poddany procesowi wzbogacania w laboratoryjnej osadzarce pierścieniowej (10 pierścieni, węgiel w klasach wydzielonych z przedziału 0-18 mm). Po zakończeniu procesu rozdziału materiał podzielono na 5 warstw (po 2 pierścienie) i każdy z nich rozsiano na sitach na 10 klas ziarnowych, ustalając wychody warstw i klas. Następnie, tak otrzymane produkty – klasy ziarnowe, po wydzieleniu analitycznych próbek, poddano chemicznej analizie elementarnej i technicznej węgla, w celu scharakteryzowania właściwości wpływających na procesy zgazowania. Łącznie z obu kopalń uzyskano 99 próbek (50 z kopalni Janina oraz 49 z kopalni Wieczorek – w jednej z warstw nie uzyskano klasy 16-18 mm) charakteryzowanych przez następujące parametry: zawartość siarki całkowitej, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla całkowitego, ciepło spalania oraz zawartość popiołu. Przykładowe dane dla jednej z otrzymanych warstw przedstawiono w tabeli 1. Dodatkowo wykorzystano kartę przydatności technologicznej węgla (Sobolewski et al., 2012; 2013), w której opisano parametry kluczowe, istotne oraz dodatkowe, mające wpływ na proces zgazowania. Na jej podstawie oznaczono próbki węgla, które w sposób efektywny poddają się procesowi zgazowania. W celu wizualizacji danych zastosowano jedną z nowoczesnych metod wielowymiarowej statystycznej analizy czynnikowej – metodę PCA (ang. Principal Component Analysis). W metodzie tej dokonuje się rzutu prostopadłego wielowymiarowych danych na płaszczyznę reprezentowaną przez specjalnie wybrane wektory V1,V2. Są to wektory własne, odpowiadające dwóm największym (co do modułu) wartościom własnym macierzy kowariancji zbioru obserwacji. Opisany dobór wektorów V1,V2 pozwala uzyskać obraz na płaszczyźnie prezentujący najwięcej zmienności danych. Algorytm i zasady tej metody zostały szczegółowo zaprezentowane w podrozdziale 3 artykułu. Za pomocą metody PCA dokonano trzech typów analiz. Pierwszy obraz miał na celu rozpoznanie, czy możliwa jest identyfikacja pochodzenia węgla, czyli rozdział węgla pochodzącego z ZG Janina od węgla z KWK Wieczorek. Odpowiedź była twierdząca. Na tak przygotowane dane narzucono następnie warunki wynikające z nałożenia wymogów określonych w karcie przydatności technologicznej węgla. Okazało się, że przy wzięciu pod uwagę wszystkich warunków jedynie 17 próbek z ZG Janina i zaledwie jedna z KWK Wieczorek spełnia wszystkie kryteria, co przedstawiono na rysunku 2. Stwierdzono, że dzieje się tak głównie z powodu zawartości chloru, która wykracza poza nałożone limity. Cecha ta nie wpływa jednak w kluczowy sposób na sam proces zgazowania a istotna jest ze względu na aspekt ochrony środowiska. Dlatego dokonano podobnej analizy, ale przy odrzuceniu warunku dotyczącego tej cechy. Po odrzuceniu wymogów dotyczących zawartości chloru okazało się, że 37 próbek z ZG Janina oraz 41 próbek z KWK Wieczorek spełnia pozostałe zalecenia odnośnie naziemnego zgazowania w reaktorze fluidalnym. Jest to potwierdzenie wcześniejszych obserwacji autorów w tym zakresie. W obu przypadkach wizualizacja wielowymiarowa przy użyciu PCA pozwoliła stwierdzić, że obrazy punktów reprezentujących próbki węgla bardziej podatnego na zgazowanie oraz mniej przydatnego do zgazowania zajmują osobne podobszary przestrzeni oraz gromadzą się w skupiskach, które można łatwo od siebie odseparować. Stwierdzono więc, że metoda PCA pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego zarówno gdy przyjęto ograniczenie dotyczące zawartości chloru jak i przy jego pominięciu. Zastosowanie metody PCA w celu identyfikacji przydatności próbek węgla do zgazowania jest nowatorskie i nie było wcześniej stosowane. Istnieje możliwość zastosowania również innych metod w tym zakresie. Należy jednak podkreślić, że niewątpliwą zaletą metody PCA jest fakt, że w trakcie wizualizacji nie ma konieczności doboru żadnych parametrów w przeciwieństwie do wielu innych metod wizualizacji wielowymiarowych danych.
PL
W artykule zaproponowano wykorzystanie algorytmów ewolucyjnych w celu przeprowadzania analizy oczkowych sieci hydraulicznych. Zadaniem algorytmu ewolucyjnego jest wyznaczenie wartości przepływów w poszczególnych gałęziach arbitralnie zadanej sieci hydraulicznej. W artykule zaproponowano sposób kodowania rozwiązań na materiale genetycznym ewoluujących osobników oraz zdefiniowano postać funkcji dopasowania pozwalającej na ocenę rozwiązań odnajdowanych w toku procesów ewolucyjnych.
EN
In the paper we propose to use evolutionary algorithms for the purpose of analysis of hydraulic networks. The aim of evolutionary algorithm is to determine the values of flow in the branches of arbitrarily given hydraulic network. In the paper we propose the way of coding of solutions on genetic material of evolving individuals and we define the fitness function to evaluate solutions found during the process of evolution.
PL
Tematyka artykułu dotyczy wykorzystania techniki obliczeniowej bazującej na zastosowaniu algorytmów ewolucyjnych w celu rozwiązania zagadnienia ekonomicznego rozdziału obciążeń w systemie elektroenergetycznym. W artykule określono sposób kodowania rozwiązań na materiale genetycznym ewoluujących osobników oraz zdefiniowano postać funkcji dopasowania. Zaproponowano także sposób realizacji selekcji osobników w warunkach optymalizacji wielokryterialnej.
EN
The topic of the paper is about implementation of computational technique based on evolutionary algorithms for economic dispatch problem in energetic system. In the paper we defined the mode of coding of solutions on the genetic material of evolving individuals and proposed the formula for fitness function calculation. Moreover, we proposed the way of selection of individuals under the conditions of multi-objective optimization.
PL
W artykule przedstawiono propozycję wykorzystania techniki obliczeń ewolucyjnych na potrzeby optymalizacji procesu alokacji i szeregowania zadań obliczeniowych w heterogenicznych systemach wieloprocesorowych. W drugiej części artykułu zamieszczono uzyskane wyniki obliczeń ewolucyjnych dla procesu alokacji zadań w heterogenicznym systemie wieloprocesorowym.
EN
In the paper we present the proposition of using evolutionary computation technique for optimizing of task scheduling and allocation process in heterogeneous multiprocessor systems. In the first part of the article we present the results obtained for tasks allocation process in heterogeneous multiprocessor system.
PL
W artykule przedstawiono propozycję wykorzystania techniki obliczeń ewolucyjnych na potrzeby optymalizacji procesu alokacji i szeregowania zadań obliczeniowych w heterogenicznych systemach wieloprocesorowych. W pierwszej części artykułu zamieszczono wprowadzenie w problematykę szeregowania zadań w komputerowych systemach czasu rzeczywistego. W szczególności omówiono zasady leżące u podstaw funkcjonowania algorytmu szeregowania typu rate monotonic scheduling.
EN
In the paper we present the proposition of using evolutionary computation technique for optimizing of task scheduling and allocation process in heterogeneous multiprocessor systems. In the first part of the article we give an introduction to the field of task scheduling in real-time systems. In particular we present the fundamentals of rate monotonic scheduling algorithm.
EN
Multidimensional data visualization methods are a modern tool allowing to classify some analysed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. To achieve this purpose, the method of Kohonen maps was applied by means of which three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials.
PL
Metody wizualizacji wielowymiarowych danych są nowoczesnym narzędziem umożliwiającym klasyfikację analizowanych obiektów, którymi mogą być różnego typu dane opisujące wybrane zjawisko lub materiał. W przypadku materiałów uziarnionych, jakim jest np. węgiel, wiele cech ma wpływ na jakość materiału, tj. np. gęstość, wielkość ziaren, ciepło spalania, zawartość popiołu, zawartość siarki itp. Na potrzeby artykułu przeprowadzono rozdział węgli z trzech wybranych kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Każda z tych kopalni pracuje na innego typu węglu. W tym przypadku były to węgle o typach 31, 34.2 oraz 35 (według polskiej klasyfikacji typów węgla). Najpierw, materiał został podzielony na klasy ziarnowe a następnie za pomocą rozdziale w cieczy ciężkiej (roztwór chlorku cynku) na frakcje gęstościowe. Dla tak przygotowanego materiału przeprowadzono następnie analizy chemiczne mające na celu określenie takich parametrów, jak zawartość siarki, zawartość popiołu, zawartość części lotnych, ciepło spalania oraz wilgotność analityczną. W ten sposób, dla każdej klaso-frakcji uzyskano bogate charakterystyki badanego materiału. Nasuwa się więc pytanie, czy możliwa jest identyfikacja typu węgla za pomocą dostępnych danych. W tym celu zastosowano wielowymiarową technikę wizualizacji statystycznej. Istnieje wiele metod takiej wizualizacji, z których kilka było już przedmiotem wcześniejszych publikacji autorów. W tym wypadku autorzy zdecydowali się zastosować metodę sieci Kohonena. Metoda ta została opisana w rozdziale 2 pracy, gdzie oprócz opisu teoretycznego podano również główne wzory stosowane podczas modelowania tą metodą (wzory (1)-(5)). Do zbadania postawionego problemu wykorzystano optymalną liczbę iteracji i optymalny czas uczenia sieci. Pewnym problemem pojawiającym się przy takiej wizualizacji jest konieczność doboru parametrów, w celu uzyskania widoku, który w sposób czytelny prezentuje poszukiwane przez nas informacje. Należy wspomnieć, że w trakcie prowadzonych eksperymentów uzyskiwano widoki przy użyciu sieci neuronowej o wielkości od 10 × 10 do 100 × 100 neuronów. Widoki były uzyskiwane przy wartości parametru MAX_DISTANCE od 1 do wielkości sieci oraz parametru ITER od 1 do 5000. Eksperymenty były prowadzone dla różnych wzorów określających modyfikację wag. Przedstawione w pracy wyniki stanowią najbardziej czytelne z uzyskanych. Wizualizacja wielowymiarowa przy użyciu sieci Kohonena pozwala stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35, przy czym nawet zobrazowanie 3 typów węgla na jednym rysunku pozwala stwierdzić, że neurony reprezentujące próbki węgla danego typu gromadzą się w skupiskach, które można od siebie odseparować. Z tego wynika, że dane zawierają informacje wystarczające do prawidłowej klasyfikacji węgla. Zauważyć jednak warto, że przedstawienie przy pomocy sieci Kohonena, danych reprezentujących różne typy węgla parami, pozwala uzyskać jeszcze bardziej czytelne wyniki. Najlepsze efekty osiągnięto dla sieci o 40 wierszach oraz 40 kolumnach neuronów, co łącznie dało liczbę 1600 neuronów, zaś czytelność wyników rośnie wraz z postępem uczenia sieci neuronowej (wzrostem parametru ITER). Przeprowadzone doświadczenia w pełni potwierdzają, że zastosowana metoda może być z powodzeniem wykorzystana w badaniach jakościowych związanych z różnego typu materiałami uziarnionymi, w tym również węglem. Badania w tym zakresie są kontynuowane.
EN
Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.
PL
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
EN
Coal as energetic raw material features by many parameters determining its quality. In classification of coal types there are many of them with typical division of energetic, semi-coking and coking coal. The data concerning coal are usually treated as independent values while this kind of approach is not always right. Authors proposed new solutions in this aspect and performed the multidimensional analysis of three selected types of coal featuring by various properties which originated from three various hard coal mines located in Upper Silesia Region. The object of the research was so-called raw coal which was not processed before. For each type of coal the detailed statistical analysis of seven chosen properties of coal was performed. To perform adequate and complete statistical analysis it is necessary to analyze the chosen properties of coal together in multidimensional way. It was decided to apply new and modern visualizing methods of multidimensional data which were observational tunnels method and parallel coordinates method. The applied methods allowed to obtain visualization of seven-dimensional data describing coal. By means of these visualizations it was possible to observe the significant division of the features space between researched types of coal. These methods allowed to look at the investigated data from various perspectives and make possible to determine significant differences between researched materials. For the investigated coals such differences were determined clearly what proved that by means of these methods it is possible to successfully identify type of coal as well to analyze in details its individual properties and identify, for example, particle size fraction etc. The obtained results are innovative and are the basis for more detailed researches taking into consideration also other coal properties, including its structure and texture. This methodology can be also applied successfully for other types of raw materials, like ores.
PL
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być (charakteryzują się) charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o kierunkach charakteryzowania wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być: - wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba & Surowiak, 2012); - wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013); - analiza czynnikowa (Tumidajski & Saramak, 2009); - inne metody, w tym wizualizacja metodą tuneli obserwacyjnych (Jamróz, 2001), osi równoległych oraz wizualizacja zależności pomiędzy wielowymiarowymi bryłami (Jamróz, 2009). Wielowymiarowe rozkłady wektora X traktowanego jako wektor losowy, mają już swoją bogatą literaturę i praktyczne ich zastosowanie i nie będą przedmiotem tej publikacji. Pozostałe metody są ze sobą w pewien sposób powiązane, co skrótowo zostało przedstawione w artykule. Macierze współczynników korelacji liniowej i współczynników korelacji cząstkowej są związane, z reguły, z istniejącymi modelami liniowymi zależności występujących między badanymi zmiennymi wektora X. Współczynniki korelacji liniowej są wyznaczane dla par zmiennych losowych całkowicie niezależnie od pozostałych zmiennych. Cząstkowe współczynniki korelacji liniowej wyznaczane są w oparciu o macierz współczynniki korelacji liniowej z uwzględnieniem roli pozostałych zmiennych w rozważanym równaniu regresji liniowej. W przypadku analizy trzech zmiennych losowych, z których jedna jest traktowana jako zmienna zależna a dwie pozostałe jako niezależne sprowadza się to do wyznaczania współczynników korelacji dla zrzutowanych punktów równolegle do płaszczyzny regresji na ściany układu współrzędnych. Pozwala to wyznaczyć hierarchię (siłę wpływu) zależności zmiennych w rozpatrywanym układzie. Na analizie macierzy współczynników korelacji liniowej oparta jest analiza czynnikowa, która pozwala pogrupować występujące zmienne w tzw. czynniki, które reprezentują połączone wpływy zmiennych na rezultaty rozpatrywanych procesów, czyli przeprowadzić pewną klasyfikację zmiennych. W klasyfikacji typów węgli wyróżnia się wiele typów, z umownym podziałem na węgle energetyczne i koksujące. Dane dotyczące węgla są traktowane zwykle jako niezależne wielkości, przy czym takie podejście nie zawsze jest właściwe. Autorzy zaproponowali nowe rozwiązania w tym zakresie i dokonali wielowymiarowej analizy trzech wybranych typów węgla o różnych właściwościach (węgle typu 31, 34.2 oraz 35), które pochodziły z trzech różnych kopalń zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Obiektem badań w każdej z tych kopalń był tzw. węgiel surowy, nie poddawany procesom przeróbczym. Dla każdego z węgli dokonano szczegółowej analizy wybranych siedmiu cech, opisujących jego właściwości, których przykładowe wyniki zostały zaprezentowane w tabelach 1-3. Aby dokonać adekwatnej i dokładnej analizy statystycznej zebranych danych konieczna jest wielowymiarowa analiza wybranych cech węgla łącznie. Zdecydowano się na zastosowanie nowatorskich metod wizualizacji wielowymiarowych danych, którymi były metoda tuneli obserwacyjnych oraz metoda osi równoległych. Zasady i metodyka badań zostały przedstawione w podrozdziałach 2 i 3. Zastosowane metody umożliwiły uzyskanie wizualizacji siedmiowymiarowych danych opisujących węgiel. Za pomocą tych wizualizacji możliwe jest zaobserwowanie wyraźnego podziału przestrzeni cech pomiędzy badanymi typami węgla. Metody te umożliwiły spojrzenie na badane dane z różnych perspektyw, które pozwalają na stwierdzenie zasadniczych różnic badanych materiałów. Dla badanych węgli stwierdzono wyraźne takie różnice co świadczy o tym, że za pomocą proponowanych metod możliwa jest skuteczna identyfikacja typu węgla, jak również dokładniejsza analiza jego poszczególnych cech i identyfikacja np. klasy ziarnowej. Szczegółowe obrazy i ich interpretacja zostały przedstawione w rozdziale 3 i we wnioskach końcowych. Rysunki 3-5 obrazują różnice pomiędzy poszczególnymi typami węgla otrzymane metodą tuneli obserwacyjnych. Wyraźnie można rozgraniczyć próbki dotyczące poszczególnych węgli a tym samym możliwa jest identyfikacja typu węgla na podstawie wielowymiarowej analizy. Rysunki 6-7 pokazują zastosowanie innej metody wielowymiarowej, którą była metoda osi równoległych. Metoda ta okazała się być skuteczna do uzyskania informacji o konieczności przeskalowania poszczególnych cech, w celu uzyskania bardziejczytelnych rezultatów. Natomiast rysunek 10 pokazuje różnice otrzymane metodą tuneli obserwacyjnych pomiędzy charakterystykami konkretnych klas ziarnowych wybranego materiału, którym w tym przypadku był węgiel typu 31. Uzyskane wyniki i zastosowana metodyka są nowatorskie i stanowią bazę pod bardziej szczegółowe badania, biorące pod uwagę także inne charakterystyki węgli, w tym ich strukturę i teksturę. Za pomocą przedstawionych metod możliwe jest stwierdzenie, czy wybrane cechy są wystarczające do identyfikacji zarówno typu węgla, jak również klasy ziarnowej i innych jego cech. Metodyka ta może być również stosowana z powodzeniem dla innych typów surowców mineralnych, np. dla rud.
EN
Theoretical simulation of the v(s) stretching band is presented for salicylalde-hyde taking into account an adiabatic coupling between the high-frequency O-H stretching and the low-frequency intramolecular O...O stretching modes, linear and quadratic distortions of the potential energy for the low-frequency vibration in the excited state of the O-H stretching vibration and resonance interaction between the O-H and the C-H stretching vibrations in the hydrogen-bonded ring.
EN
Theoretical simulation of the v(s) stretching band is presented for acetylsalicylic acid (aspirin) at two temperatures 77 and 300 K. The simulation takes into account adiabatic couplings between the high-frequency O-H stretching and the low-frequency intermolecular O...O stretching modes, linear and quadratic distortions of the potential energy of the low-frequency vibrations in the excited state of the O-H stretching vibration, resonance interaction between the two hydrogen bonds in a dimer, and Fermi resonance between the O-H stretching and the overtone of the O-H bending vibrations.
12
Content available remote Patrzenie w przestrzeni n-wymiarowej
PL
W artykule przedstawiono możliwość oglądania zewnętrznego wyglądu brył n-wymiarowych. W tym celu powstał model matematyczny rozwiązujący ten problem. Umożliwiło to realizację programu komputerowego pozwalającego oglądać dowolne bryły o dowolnej liczbie wymiarów. Z różnych stron zaprezentowano wygląd przykładowych brył: kostki 4-wymiarowej i kostki 7-wymiarowej będących wielowymiarowymi odpowiednikami sześcianu.
EN
The possibility of looking at the exterior appearance of the n-dimensional solids using the eyesight is introduced in this article. The developed mathematical model allows to create the computer program that makes looking at any solid having any number of dimensions possible. The appearance of hypothetical solids from various perspectives is shown as well, for instance the four-dimensional and the seven-dimensional dices which are the multidimensional equivalents of a cube.
13
Content available remote Uogólnione rozwiązanie problemu Banacha
PL
Stefan Banach postawił następujący problem: Mamy dwie kieszenie, w każdej po n zapałek. Ciągniemy losowo po jednej zapałce z prawej lub lewej kieszeni. Jakie jest prawdopodobieństwo, że w momencie gdy będziemy chcieli wyciągnąć zapałkę z już pustej kieszeni, to w drugiej pozostanie k zapałek. W artykule przedstawiono rozwiązanie ogólniejszego problemu, w którym mamy do czynienia z m kieszeniami.
EN
Stefan Banach rose the following problem: There are two pockets, in each pocket there are n matches. One draws one match out of the right or the left pocket. What is the probability that in the moment when we would like to draw a match out of an already empty pocket, in the other pocket there will still be k matches ? In the article the author described a solution of a more general problem in which one deals with m pockets.
14
Content available remote Model rozpoznawania znaków drukowanych
PL
W artykule podjęto problem rozpoznawania znaków drukowanych. Do realizacji recepcji użyto odwzorowania przekształcającego zbiór funkcji całkowalnych dwóch zmiennych o ograniczonej dziedzinie i wartościach w przestrzeń będącą iloczynem kartezjańskim k zbiorów funkcji jednej zmiennej o ograniczonej dziedzinie i wartościach. Opisano wyniki działania systemu zrealizowanego na podstawie zdefiniowanej w ten sposób recepcji.
EN
In this article there was undertaken the problem of recognizing printed signs. To realization of reception there was used a function transforming a collection of integrate dfunctions of two variables with a limited domain andvalues in space that is a Cartesian product of k collections of functions of one variable with a limited domain and values. There were described the results of the activity of a system which was constructed on the basis of defined in this way reception.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.