In the present paper, computed tomography (CT) inspection is shown. The CT inspection method allowed to rate the density of defects hidden inside a material, which has a significant role in the live material. The method allows to evaluate the reliability of tensile test’s results. In our analysis, the position of crack propagation was determined by CT, and the tensile test was performed to check the accuracy of the nondestructive method. The tensile tests were performed on Inconel 738LC [1] samples.
In the present work, an effect of plasma-forming parameters on light emission during analysis by glow discharge optical emission spectrometry of Ni–Cu model alloys is studied. To evaluate the effects of plasma-forming parameters on light emission, argon pressure was varied in the range between 600 Pa and 1000 Pa under a constant power of 20 W. Moreover, a variation of power at 20 W and 30 W under a constant Ar pressure of 1000 Pa was investigated. An effect of the element content on light emission was found. Namely, for Cu, a monotonic, non-linear increase in measured light intensity with an increasing Cu content was found. Surprisingly, for pure Ni, a lower light intensity was measured as for Ni90–Cu10 (at.%). Possible reasons causing this was listed as: (i) possible effect of hydrogen, (ii) overlapping of lines for Cu and Ni and (iii) self-absorbing of Ni line at 341.574 nm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.