Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work aims at investigating the effect of microwave local positions (i.e. before crushing (BC), after crushing (AC) and after milling (AM)) on microwave-assisted flotation of chalcopyrite and pyrite in a porphyry copper complex deposit. Individual given samples for each state were pre-treated with a variable power microwave at a power level of 90 to 900W for 15, 30, and 60s. Furthermore, froth floatation experiments were carried out using a laboratory mechanical Denver flotation cell on both microwave-treated and untreated samples. Particle surface properties were characterized by a scanning electron microscopy (SEM) and an energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the chalcopyrite and pyrite floatabilities increased monotonically by rising the exposure time and power level for the uncrushed preconditioned samples (BC) due to the enhancement of mineral liberation degrees together with the formation of sulphide species and polysulphides on the mineral surfaces. However, flotation results of treated samples for the crushed one (AC) revealed an optimum range. Formation of intensive oxide layers on the mineral surfaces of milled samples (AM) led to a substantial reduction in their recoveries by increasing the microwave’s power level and the sample’s exposure time. The results obtained from mineral’s floatabilities in recleaner stage showed that the microwave-assisted sample at 900W for 30s at BC state favourably provided 5% higher S.E.’s than that of the untreated sample. Finally, it was concluded that the microwave pretreatment of samples induced the best floatability responses if it located before the crusher.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.