To improve the R&D process, by reducing duplicated bug tickets, we used an idea of composing BERT encoder as Siamese network to create a system for finding similar existing tickets. We proposed several different methods of generating artificial ticket pairs, to augment the training set. Two phases of training were conducted. The first showed that only and approximate 9% pairs were correctly identified as certainly similar. Only 48% of the test samples are found to be pairs of similar tickets. With the fine-tuning we improved that result up to 81%, proving the concept to be viable for further improvements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.