Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thrombosis is a major and serious complication in patients with artificial heart pump assist device (HPAD). There is an urgent need for an efficient and safe method to solve the clinical challenge. We have developed a new type of ultrasound integrated heart pump assist device (uHPAD) with a pair of ultrasonic transducer rings installed around the pump. Based on the in-vitro experiments, the sonothrombolysis protocol was determined. Then, in-vivo experiments were performed on sheep to evaluate the efficacy and safety of the novel uHPAD. It is found that the ultrasound assisted thrombolysis with the drug-loaded microbubbles can accelerate the dissolution of the thrombus in the pump, while have no significant negative effect on blood cell components, coagulation-hemolysis system, and the structure and function of main organs. The ultrasound assisted thrombolysis is demonstrated to be a promising method to solve the clinical problem of thrombosis in the HPAD.
EN
Solasodine, a steroidal alkaloid, is distributed extensively in Solanaceae plants with multiple biological activities such as neuroprotection, antineoplastic and anticonvulsant activities. However, there is little information about the excretion of intact solasodine in vivo. To investigate its excretion, a reliable LC-MS/MS method for quantitation solasodine in rat urine and feces was established and validated. Sample preparation was carried out by liquid-liquid extraction using MTBE as extractant. Moreover, rat urine was preconditioned with BSA, an anti-adsorptive additive, to prevent the nonspecific binding of solasodine to containers and tubes. The method was validated over the range of 4–2000 ng mL⁻¹. The correlation coefficient (r2t) were all above 0.999. The intra- and inter-day precision and accuracy were within 16.9% and between −11.0 and 8.9%, respectively. The recovery of solasodine in urine and feces was in the range of 72.5–80.3 and 75.7–80.2%, respectively. IS-normalized matrix factor ranged from 0.94 to 1.12 with RSD% ≤4.02%. This method was successfully applied to the excretion study of solasodine following oral and intravenous administration.
PL
Przeprowadzono syntezę jednocentrowego kompleksu rutenu(II) o wzorze [Ru(bpy)₂-N^N], w którym bpy oznacza 2,2'-bipirydynę, a N^N 6,7-dimetylo-2,3-di(2-pirydylo)chinoksalinę, oraz zbadano jego absorpcję elektronową, luminescencję i właściwości elektrochemiczne. Kompleks ten wykazywał bardzo ograniczoną aktywność katalityczną w reakcjach utleniania wody, ale po wprowadzeniu jednego dodatkowego równoważnika jonu rutenu otrzymano dwucentrowy pośredni kompleks rutenu [Ru(bpy)₂-N^N-Ru] o znacznie zwiększonej aktywności.
EN
A mononuclear [Ru(bpy)₂-N^N] complex where bpy is 2,2’-bipyridine and N^N is 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline was synthesized and studied for electronic absorption, luminescence, electrochem. properties and catalytic activity in O evolution reactions (OER) after addn. of an extra equiv. of Ru(II) ion. The so-formed binuclear Ru [Ru(bpy)₂-N^N-Ru] complex showed a greatly enhanced catalytic activity in OER.
EN
Isopropyl nitrate (IPN) is a component of propellant fuel. High concentrations of IPN can still produce detonation. To date, very limited literature is available regarding high concentrations of IPN detonations. The detonation pressure is related to the equivalence ratio and density of IPN/air mixtures. These two factors have opposing effects on the detonation of an IPN/air mixture. The detonation characteristics of gaseous IPN/air mixtures at high concentrations (300-4000 g/m3) have been studied numerically. The results showed that when the IPN concentration is 300-600 g/m3, density played a dominant role on detonation. The maximum detonation pressure, 2.81 MPa, and the maximum detonation velocity, 1890 m/s, occurred at a concentration of 600 g/m3 (equivalence ratio Φ = 2.15). When the IPN concentration was increased from 300 to 600 g/m3, the peak overpressure and velocity increased by 19.6% and 6.2%, respectively. When the IPN concentration is higher than 600 g/m3, the equivalence ratio is extremely large and the detonation properties were seriously degraded. An analysis of the detonation products illustrated the burn-off rate of high concentrations of IPN and the influence of the detonation product CH3CHO. At a concentration of 600 g/m3, the IPN/air mixture can achieve optimal detonation properties and fuel economy.
EN
In this study, we conducted a comparative analysis of the abundance and diversity of bacteria on the surface of the submerged macrophyte Myriophyllum spicatum, as well as in the surrounding water column and sediment in the low-salinity area of Hangzhou Bay, China. Bacterial clones from three clone libraries were classified into 2089 operational taxonomic units (OTUs), most of which affiliated with bacterial divisions commonly found in marine ecosystems. Alphaproteobacteria, Cyanobacteria and Gammaproteobacteria were the most abundant groups of bacteria on the surface of plants, in the water column and sediment, respectively. Epiphytic bacterial communities were more closely related to those in the sediment than bacterioplankton, and some species of epiphytic bacteria were found only on the surface of M. spicatum. The relative abundance of epiphytic bacterial genera associated with breakdown of organic compounds and with cellulose digestion was higher in October than that in July. These results suggested that bacterial communities on the surface of M. spicatum may originate from sediment bacterial communities and their specific structure was gradually formed on the surface of M. spicatum after being cultivated in low-salinity seawater.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.