Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In today’s time, construction is the main key for development of any nation, but land resources are getting deplete. Thus, construction on compressible soil is left as a choice. Stone columns or granular piles (GPs) are broadly used to advance the bearing capacity of crummy ground and lessen the displacement of construction serected on them. GP is the most efficient and cheap for ground improvement. Analysis of single partially strengthened (SPS) floating granular piled raft is presented in this paper in terms of several normalized aspects like vertical and radial displacement impact factors, settlement impact factor (SIF) for any depth, the normalized GP–soil interface shear and radial stresses, the load ratio, i.e., the percentage of the load taken by the GP and raft to the total load, and the normalized contact pressure distribution below the raft, which are evaluated for SPS floating granular piled raft. The SIF for top of GP is noticed to decline with the surge in the values of the strengthening parameters. The interfacial shear stresses get reorganized along the length of the GP.
EN
Stone columns (or granular piles, GPs) are progressively being utilized for ground improvement, mostly for pliant edifice such as road mounds, oil depot, and so forth. The present analysis is done by introducing strengthening at both the ends of GP, i.e., bottom and top end so that the bulging problem will be solved and the beneficiary effect of the bearing stratum can be utilized by the bottom strengthening feature. Analysis of a single partially strengthened, at both top and bottom, end-bearing GP is presented in this article in terms of displacement affecting component for the top (DACT) of GP, percentage load transferred to the base (PLTB) of strengthened GP, and normalized shear stress (NSS). The PLTB of the strengthened GP was found to increase considerably. The NSS was found to reduce at the top end of GP and is found to be redistributed along the length of GP.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.