Due to its irritating, allergenic, toxic, pathogenic, and carcinogenic effects, suspended particulate matter (PM) seriously threatens human health. Therefore, it seems obvious to control the level of concentration of PM2.5 and PM10 particles and their reduction in the indoor environment such as homes, workplaces, or public utilities. In the following work, an attempt was made to determine the efficiency of a home air purifier based on the concentration of PM2.5 and PM10 particles at selected measurement points in a teaching room located in the building of the Bialystok University of Technology. The tests were carried out in March and in April 2021, using the DT-96 meter, which measured the concentration of PM2.5 and PM10 in the air. The study included the time and intensity of air purifier operation. In addition, reference was made to the concentration of PM2.5 and PM10 in outdoor air, which was measured at measuring stations in the city of Bialystok. The obtained test results made it possible to assess the initial state of air quality in the test room, as well as to determine the parameters affecting the best efficiency of the air purifier and to notice the dependencies in changes in the concentration of PM2.5 and PM10 between the indoor and outdoor environment.
The interdependence between air quality, human health and the state of the environment has prompted the development of research on causes, control and improvement of existing pollutants in the air. This paper addresses the problem of air pollution by PM2.5 and PM10 in particulate matter. There was draws attention to solutions to protect air against existing PM2.5 and PM10. Measurements of PM2.5 and PM10 concentrations in selected twenty control points on the campus of the Białystok University of Technology were discussed and analysed. On the basis of the obtained results, an assessment of the air quality in the area in question was performed. Slight hourly fluctuations in the concentration of particulate matter in the air were observed, higher in the morning and evening hours. On 15 March and 16 March, daily exceedances of the permissible PM10 and PM2.5 concentrations were recorded at both the Białystok University of Technology campus and the air quality monitoring stations in Białystok. Comparing the influence of meteorological conditions on PM10 and PM2.5 concentrations, faint correlations were found for temperature and wind speed. As temperature increased, particulate matter concentrations decreased. Low wind velocities corresponded with exceedances of the permissible daily concentrations of PM10 and PM2.5 in the air.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.