Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Global warming and climate change are some of the most widely discussed topics in today's society, and they are of considerable importance to agriculture globally. Climate change directly affects agricultural production. On the other hand, the agricultural sector is inherently sensitive to climate conditions, and this has made the agricultural sector one of the most vulnerable sectors to the effects of global climate change. Rising CO2 levels in the atmosphere, increased temperature, and altering precipitation patterns all substantially influence agricultural insect pests and agricultural productivity. Climate change has a number of implications for insect pests. They can lead to a decreased biological control effectiveness, particularly natural enemies, increased incidence of insect-transmitted plant diseases, increased risk of migratory pest invasion, altered interspecific interaction, altered synchrony between plants and pests, increase in the number of generations, increased overwintering survival, and increase in geographic distribution. As a consequence, agricultural economic losses are a real possibility, as is a threat to human food and nutrition security. Global warming will necessitate sustainable management techniques to cope with the altering state of pests, as it is a primary driver of pest population dynamics. Future studies on the impacts of climate change on agricultural insect pests might be prioritized in several ways. Enhanced integrated pest control strategies, the use of modelling prediction tools, and climate and pest population monitoring are only a few examples.
EN
The growing population and the development of industries in all countries of the world have created a very important and complex issue for water supply to cities. Today, many parts of the world are facing the problem of water shortage and this problem cannot be easily solved. In addition to the proper use of water resources and preventing the loss of natural water, the establishment of regional water supply networks is effective in meeting the future needs of the people. A water distribution network (water supply network) is a set of interconnected pipelines used to transport and distribute water in a complex. In designing the water distribution network, factors such as the type of water distribution network, water pressure, water velocity, design flow, minimum pipe diameter, pipe material and many other factors should be considered. In this study, we have tried to design the water supply network of a part of Balikpapan city in Indonesia. The design method led to the determination of pressure values in the connection nodes, pipe diameters, flow rate and velocity in the pipes. All the existing criteria are considered in the design of the water supply network. Although this study has been implemented for a specific study area, it can be of great help to designers in designing the water supply network.
EN
Using hubs in distribution networks is an efficient approach. In this paper, a model for the location-allocation problem is designed within the framework of the queuing network in which services have several levels, and customers must go through these levels to complete the service. The purpose of the model is to locate an appropriate number of facilities among potential locations and allocate customers. The model is presented as a multi-objective nonlinear mixed-integer programming model. The objective functions include the summation of the customer and the waiting time in the system and the waiting time in the system and minimizing the maximum possibility of unemployment in the facility. To solve the model, the technique of accurate solution of the epsilon constraint method is used for multi-objective optimization, and Pareto solutions of the problem will be calculated. Moreover, the sensitivity analysis of the problem is performed, and the results demonstrate sensitivity to customer demand rate. Based on the results obtained, it can be concluded that the proposed model is able to greatly summate the customer and the waiting time in the system and reduce the maximum probability of unemployment at several levels of all facilities. The model can also be further developed by choosing vehicles for each customer.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.