Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Atrial fibrillation is a common cardiac arrhythmia, and its incidence increases with age. Currently, numerous deep learning methods have been proposed for AF detection. However, these methods either have complex structures or poor robustness. Given the evidence from recent studies, it is not surprising to observe the limitations in the learning performance of these approaches. This can be attributed to their strictly homogenous conguration, which solely relies on the linear neuron model. The limitations mentioned above have been addressed by operational neural networks (ONNs). These networks employ a heterogeneous network configuration, incorporating neurons equipped with diverse nonlinear operators. Therefore, in this study, to enhance the detection performance while maintaining computational efficiency, a novel model named multi-scale Self-ONNs (MSSelf-ONNs) was proposed to identify AF. The proposed model possesses a significant advantage and superiority over conventional ONNs due to their self-organization capability. Unlike conventional ONNs, MSSelf -ONNs eliminate the need for prior operator search within the operator set library to find the optimal set of operators. This unique characteristic sets MSSelf -ONNs apart and enhances their overall performance. To validate and evaluate the system, we have implemented the experiments on the wellknown MIT-BIH atrial fibrillation database. The proposed model yields total accuracies and kappa coefficients of 98% and 0.95, respectively. The experiment results demonstrate that the proposed model outperform the state-of-the-art deep CNN in terms of both performance and computational complexity.
EN
In recent years, various models based on convolutional neural networks (CNN) have been proposed to solve the cardiac arrhythmia detection problem and achieved saturated accuracy. However, these models are often viewed as “blackbox” and lack of interpretability, which hinders the understanding of cardiologists, and ultimately hinders the clinical use of intelligent terminals. At the same time, most of these approaches are supervised learning and require label data. It is a time-consuming and expensive process to obtain label data. Furthermore, in human visual cortex, the importance of lateral connection is same as feed-forward connection. Until now, CNN based on lateral connection have not been studied thus far. Consequently, in this paper, we combines CNNs, lateral connection and autoencoder (AE) to propose the building blocks of lateral connection convolutional autoencoder neural networks (LCAN) for cardiac arrhythmia detection, which learn representations in an unsupervised manner. Concretely, the LCAN contains a convolution layer, a lateral connection layer, an AE layer, and a pooling layer. The LCAN detects salient wave features through the lateral connection layer. The AE layer and competitive learning is used to update the filters of the convolution network—an unsupervised process that ensures similar weight distribution for all adjacent filters in each convolution layer and realizes the neurons’ semantic arrangement in the LCAN. To evaluate the performances of the proposed model, we have implemented the experiments on the well-known MIT–BIH Arrhythmia Database. The proposed model yields total accuracies and kappa coefficients of 98% and 0.95, respectively. The experiment results show that the LCAN is not only effective, but also a useful tool for arrhythmia detection.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.