Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Sonothrombolysis induces clot breakdown using ultrasound waves to excite microbubbles. Despite the great potential, selecting optimal ultrasound (frequency and pressure) and microbubble (radius) parameters remains a challenge. To address this, a computational model was developed to investigate the bubble behaviour during sonothrombolysis. The blood and clot were assumed to be non-Newtonian and porous, respectively. The effects of ultrasound and microbubble parameters on flow-induced shear stress on the clot surface during stable and inertial cavitation were investigated. It was found that microbubble translation towards the clot and the shear stress on the clot surface during stable cavitation were significant when the bubble was about to undergo inertial cavitation. While insonation of large microbubble (radius of 1.65 μm) at low frequency (0.50 MHz) produced the highest shear stress during stable cavitation, selection of these parameters is not as intuitive for inertial cavitation due to the strong competing effect between jet velocity and translational distance. An increase in jet velocity is always accompanied by a decrease in the translational distance and vice versa. Therefore, a right balance between the jet velocity and the translational distance is critical to maximise the shear stress on the clot surface. A jet velocity of 303 m/s and a distance travelled of 5.12 μm at an initial bubble-clot separation of 10 μm produced the greatest clot surface shear stress. This is achievable by insonating a 0.55 μm microbubble using 0.50 MHz and 600 kPa ultrasound.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.