Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Molding material-related studies within the research activities concerning foundry technology have always been limited despite the significant effect of molding mixtures on the quality of cast parts. One reason behind this trend is the difficulty in interpreting the results of such complex systems like molds and cores. This paper provides a new possibility for studying the heat-absorption performance of materials used as molding media in metal casting processes. By further developing the Fourier thermal analysis method of cores and molds introduced by earlier studies, the investigation of unbonded sand has become available. The heat-absorption properties of the components can be hereby separated and studied respectively. Thermal analyses were performed on sphere-shaped resin-bonded cores with various binder levels as well as on unbonded sand samples. The temperature data collected from two points of the samples were then used for the calculation of the novel thermophysical properties. The results revealed not only quantitative but qualitative differences in the characteristics of the binder decomposition processes, providing a deeper understanding on the thermal behavior of molding materials. The outcome of the research provides more accurate data, which is the key for the improved simulation of casting processes.
EN
Depending on the preparation and the applied materials, moulds and cores can be of high rigidity or can be flexible. Although, chemically bonded moulding materials have relatively good flexibility, their high temperature behaviour determines the dimensional accuracy, the stresses in the castings and can induce several casting defects, such as rattail, veining, etc. The phenomenon is based on two major effects: the thermal expansion of the unbonded foundry sands and the deformation of the sand mixtures. The main objective of the present work was to study the relationship between these two effects, and to improve the knowledge related to the thermo-mechanical interactions between the casting and the mould. Dilatometric analysis of unbonded sand samples were performed and compared to the results of hot distortion tests of moulding mixture specimens. The results showed, that the thermal expansion of foundry sand largely influences the hot distortion behaviour, but depending on the type of binder used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.