Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.
PL
W pracy zaprezentowano system klasyfikacji wad tkanin przy użyciu probabilistycznej sieci neuronowej (PNN) i przy zastosowaniu systemu Field Programmable Gate Array (FPGA). PNN pozwala na osiągnięcie dokładności 98 ± 2% dla zbioru danych testowych, podczas gdy system FPGA pozwala na osiągnięcie dokładności około 94 ± 2%. System FPGA pracuje przy częstotliwości 50,777 MHz, co odpowiada 19,694 ns.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.