Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Osiągnięcie przez Unię Europejską neutralności klimatycznej do 2050 roku wymaga transformacji i modyfikacji europejskiego systemu energetycznego. Wykorzystanie w tym celu wodoru ma pozwolić na dekarbonizację oraz redukcję emisji gazów cieplarnianych. Priorytetem jest otrzymywanie odnawialnego wodoru (green hydrogrn). W okresie przejściowym dopuszcza się także wykorzystanie wodoru niskowęglowego (blue hydrogen).
EN
The increased use of fossil fuels and growing greenhouse gas emissions leads to environmental problems. To reach climate neutrality by 2050 it is necessary to transform the EU’s energy system. The EU Strategy for Energy System Integration [3], the report published by the EU Commission in 2020, provides the pathway for a new integrated energy system transition. In the new integrated energy system, the development of clean hydrogen (green hydrogen) using renewable energy plays a main role. However, in the transition period, hydrogen based on fossil fuels (blue hydrogen) will be also used to decrease emissions and develop a manageable market. The EU Hydrogen Strategy [4] presents a three step plan to take advantage of hydrogen potential. Hydrogen has received worldwide attention as a clean energy solution with many applications in the industry, power, and transportation sectors. Hydrogen is a carbon free carrier and does not emit any pollution. Its role is essential for the EU’s commitment to achieve carbon neutrality by proper investments, regulations, research, and innovations. According to these plans, the constructed electrolyzers will be used for the production of renewable green hydrogen, then local hotspots will be connected for end users into a large European hydrogen infrastructure. Finally, mature clean hydrogen technologies will be utilized at a large scale. Generally, the European investments by 2050 in renewable green hydrogen are about €180 - 470 billion, and for low carbon fossil based blue hydrogen €3 - €18 billion [14]. As predicted, clean hydrogen may meet 24% of world energy requirements by 2050. This study presents an energy transition pathway for sustainable development by means of hydrogen energy. Detailed information on hydrogen production methods and costs, storage, and applications is provided. The new technological directions in hydrogen production, storage, and utilization are described. The integration of hydrogen production from fossil fuels with CCS/CCUS technologies is discussed. Linking natural gas reforming with CCUS technologies is the cheapest way to decarbonize the EU energy system by 2050 in comparison with the all electric approach. 80 to 90% of CO2 emissions can be removed using CCUS technologies [16]. Investment costs of hydrogen production by electrolysis of water are much higher than for hydrogen production from natural gas integrated with CCUS processes [15]. CCUS technologies represent strategic value in the transition process to climate neutrality. CCUS can favour hydrogen production from natural gas or coal and provide low carbon hydrogen at a lower cost in the near future. Currently, the cost of hydrogen production integrated with CCUS is much lower than hydrogen production based on electrolysis and renewable sources of energy. It is estimated that CCUS integrated with hydrogen production will be a competitive solution even with the declining costs of electrolyzers and renewable electricity. The EU policy ultimately insists on the production and development of renewable hydrogen (green hydrogen) and hydrogen produced from fossil fuels coupled with CCUS technologies (blue hydrogen).
PL
W pracy przedstawiono wyniki badań separacji ditlenku węgla i azotu na ceramicznych membranach impregnowanych cieczami jonowymi [Emim][Ac] (octan 1-etylo-3-metyloimidazolowy) oraz [Emim][BF4] (4-fluoroboran 1-etylo-3-metyloimidazolowy). Badania przeprowadzono dla membrany ceramicznej firmy Inopor w temperaturach 20-60°C dla ciśnień 1-7 bar. Ciecz jonową nanoszono metodą pokrywania. Stwierdzono, że otrzymane membrany SILMs charakteryzują się niewielkimi strumieniami masowymi oraz dużymi wartościami selektywności.
EN
The experimental results of carbon dioxide and nitrogen separation on ceramic membranes impregnated with ionic liquids [Emim][Ac] (1-ethyl-3-methylimidazolium acetate) and [Emim][BF4] ((1-ethyl-3methylimidazolium tetra fluoroborate) are presented. Ceramic membranes made by Inopor were investigated in 20-60°C and in the pressure range 1-7 bar. The ionic liquid was introduced into ceramic support by coating method. It was found, that prepared SILMs are characterized by small mass fluxes and high selectivities.
PL
W pracy przedstawiono wyniki badań separacji ditlenku węgla i azotu na ceramicznych membranach impregnowanych cieczami jonowymi [Emim][Ac] ] (octan 1-etylo-3-metyloimidazolowy) oraz Emim][Tf2N] (1-etylo-3-metylolimidazolowy bis[tri(fluorometano)sulfonylo)]imidek). Badania przeprowadzono dla membrany ceramicznej firmy Inopor w temperaturach 20-60°C dla ciśnień 1-7 bar. Ciecz jonową nanoszono metodą pokrywania oraz zanurzania. Stwierdzono, że otrzymane membrany SILMs charakteryzują się niewielkimi strumieniami masowymi oraz dużymi wartościami selektywności.
EN
The experimental results of carbon dioxide and nitrogen separation on ceramic membranes impregnated with ionic liquids [Emim][Ac] (1-ethyl-3-methylimidazolium acetate) and Emim][Tf2N] (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) are presented. Ceramic membranes made by Inopor were investigated in 20-60°C and in the pressure range 1-7 bar. The ionic liquid was introduced into ceramic support by coating and soaking. It was found, that prepared SILMs are characterized by small mass fluxes and high selectivities.
PL
W pracy przedstawiono wyniki badań separacji ditlenku węgla i azotu na ceramicznych membranach ciekłych impregnowanych cieczą jonową [Emim][Ac] ] (octan 1-etylo-3-metyloimidazolowy). Badania przeprowadzono dla membrany ceramicznej firmy Pervatech BV w temperaturach 20-60°C dla ciśnień 1- 7 bar. Ciecz jonową nanoszono metodą pokrywania oraz zanurzania. Stwierdzono, że otrzymane membrany SILMs charakteryzują się niewielkimi strumieniami masowymi oraz dużymi wartościami selektywności.
EN
The experimental results of carbon dioxide and nitrogen separation on ceramic membranes impregnated with ionic liquid [Emim][Ac] (1-ethyl-3-methylimidazolium acetate) are presented. Ceramic membranes made by Pervatech BV were investigated in 20-60°C and in the pressure range 1-7 bar. The ionic liquid was introduced into ceramic support by coating and soaking. It was found, that prepared SILMs are characterized by small mass fluxes and high selectivities.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.