Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The designed aircraft frame structure uses a connection of tubular rods by welding. To apply automatic welding of trusses, the authors designed and assembled the welding station adapted to the dimensions and truss shape. You should also choose the appropriate welding power source and an interface for communication with a robot or automaton. Automatic welding of trusses also requires programming of the robot’s movement trajectory, especially the welding head, and a particularly accurate selection of welding process parameters. The most important issue of automation of the welding process is the nodes of the aircraft engine frame, whose limited access requires manual welding. Therefore, the future of welding lattice aircraft structures requires a hybrid approach to the process, i.e. some of the node connections can be easily automated, and some will remain in classical manufacturing methods. In addition, the topic of checking such connections using NDT methods was discussed. In addition, the issue of checking this type of connection using methods approved for aviation, i.e. NDT, was discussed.
PL
W projektowanej konstrukcji ramy samolotu zastosowano połączenie prętów rurowych poprzez spawanie. Aby zastosować spawanie automatyczne kratownic, autorzy zaprojektowali i zmontowali stanowisko spawalnicze dostosowane do wymiarów i kształtu kratownicy. Należy również dobrać odpowiednie źródło zasilania spawania i interfejs do komunikacji z robotem lub automatem. Spawanie automatyczne kratownic wymaga programowania trajektorii ruchu robota, zwłaszcza głowicy spawającej, oraz bardzo dokładnego doboru parametrów procesu. Najistotniejszą kwestią automatyzacji procesu jest spawanie węzłów ramy silnika samolotu, które ze względu na ograniczony dostęp wymagają spawania ręcznego. Zatem przyszłość spawania kratowych konstrukcji lotniczych wymaga hybrydowego podejścia do procesu - czyli częściowo proces łączenia węzłów można będzie prosto zautomatyzować, a częściowo trzeba będzie pozostać przy klasycznych metodach wytwarzania. Ponadto podjęto tematykę kontroli tego typu połączeń metodami dopuszczonymi dla lotnictwa, tj. NDT.
EN
Demand for bent pipe profiles in various industrial sectors is increasing due to considerations necessitating lightweight construction, safety, as well as space and cost savings. Lightweight construction is becoming increasingly important for economic and ecological reasons. This can be seen in the automotive and aerospace industries, as well as in civil engineering, where curved structures are often required. In order to reduce the weight of the aircraft, the aviation industry often uses spatial truss structures with bent elements. The challenge is to meet all of the stringent requirements regarding design, safety, structure, size, cost, etc., without compromising a structure's stiffness. Profiles with complicated cross-sections and so-called tailored tubes are increasingly used in the production of automotive and aircraft structures (General Aviation). Pipe and profile bending technologies are constantly being improved upon to meet the growing expectations of customers and ensure greater process efficiency. Currently, efforts are being made to increase the level of automation in this area by combining the functionality of modern bending machines with the capabilities of industrial robots. CNC bending machines currently dominate the industrial pipe bending process. A technologically advanced bending machine allows for the production of increasingly complex shapes and profiles.
EN
The use of HSM technology in the technological processes of milling and machining elements of aircraft structures made from (among other materials) aluminum alloys makes possible the production of elements with complex shapes, appropriate levels of precision workmanship, as well as surface roughness and waviness. The efficiency of the machining process is also a crucial factor, allowing it to compete with other manufacturing technologies. The achievement of these effects consists of many factors related to the machining process: machine tools and their rigidity, machining parameters, type of processed materials, as well as machining tools. The requirements for the tools used are related to the workpiece material and its specific properties, as well as the extreme machining conditions used (especially cutting speed vc and efficiency of the cutting process).
PL
Zastosowanie technologii HSM w procesach technologicznych frezowania konstrukcji lotniczych wykonanych m.in. ze stopów aluminium, umożliwia produkcję elementów o skomplikowanych kształtach, odpowiednim poziomie precyzji wykonania oraz chropowatości i falistości powierzchni. Istotnym czynnikiem, pozwalającym konkurować z innymi technologiami wytwarzania, jest również wydajność procesu obróbki. Na osiągnięcie tych efektów składa się wiele czynników związanych z procesem obróbki: obrabiarki i ich sztywność, parametry obróbki, rodzaj obrabianych materiałów, a także narzędzia obróbkowe. Wymagania stawiane stosowanym narzędziom są związane z materiałem obrabianym i jego specyficznymi właściwościami, a także ekstremalnymi warunkami obróbki (zwłaszcza prędkością skrawania vc i wydajnością procesu skrawania).
4
Content available remote Stability analysis of high speed cutting in application to aluminum alloys
EN
Progress in the production of cutting tools, CNC machine tools, and CAM software has contributed to improvement in subtractive machining processes, including milling, the so-called high speed cutting (HSC) and high performance cutting (HPC) machining. The cutting parameters that define the boundaries between the aforementioned technologies and conventional machining are not clearly defined. This is due to the close correlation between the process conditions and the types of processed material. High speed cutting and high performance cutting can be used for processing such as: machining of materials in the hardened state, machining without cutting fluid and with minimal lubrication, and thin-wall integral aerospace structures. The study examined complex analyses of HSC machining due to the process stability. The test results prove the dominant influence of cutting speed changes on a method’s effectiveness for spindle speeds up to 80,000 rpm.
PL
Postęp w produkcji narzędzi skrawających, obrabiarek CNC oraz oprogramowania CAM przyczynił się do udoskonalenia procesów obróbki subtrakcyjnej, w tym frezowania, tzw. obróbki skrawaniem z dużą prędkością (HSC) oraz skrawania wysokowydajnego (HPC). Parametry skrawania, które wyznaczają granicę pomiędzy wymienionymi technologiami a obróbką konwencjonalną, nie są jednoznacznie określone. Wynika to ze ścisłej korelacji pomiędzy warunkami procesu a rodzajami obrabianego materiału. Skrawanie z dużą prędkością i wysokowydajne można stosować do: obróbki materiałów w stanie utwardzonym, obróbki na sucho i z minimalnym smarowaniem oraz do obróbki cienkościennych integralnych konstrukcji lotniczych. W pracy zbadano złożone analizy obróbki HSC pod względem stabilności procesu. Wyniki badań dowodzą dominującego wpływu zmian prędkości skrawania na skuteczność metody dla prędkości obrotowych wrzeciona do 80 000 obr/min.
5
Content available remote Experimental studies of thin-walled aircraft structures
EN
Contemporary aircraft structures, and especially their load-bearing structures, are made almost exclusively as thin-walled structures, which perfectly meet the postulate of minimizing the weight of the structure. While local loss of roofing stability is acceptable under operational load conditions, exceeding the critical load limits of structural elements (frames, stringers) is practically tantamount to the destruction of the structure. The effectiveness of these ideas is influenced by the development of science about materials, processing, and machining processes, as well as the continuous improvement of technological processes. These disciplines allow for the construction of complex, geometrically integral structures that create opportunities not only for a more rational use of material characteristics, but also by their appropriate shaping, significantly increasing the mechanical properties of the supporting structure. The most important advantage in favor of the use of integral systems is economic efficiency, gained by eliminating or limiting assembly operations. Densely ribbed roofing elements belong to the category of load-bearing structure elements which, by reducing the weight which they must support, increase the strength parameters of the load-bearing structure. By reducing the thickness of the coating and, at the same time, introducing sufficiently dense stiffening longitudinal elements, it is possible to obtain a structure with significantly higher critical load values, and consequently a more favorable distribution of gradients and stress levels, which translates directly to an increase in fatigue life. The use of new technologies requires research for evidence purposes, showing that structures manufactured in this way are as safe as those manufactured using conventional methods. For this purpose, the authors conducted tests of the selected structure and performed FEM and experimental verification on the test stand. The results of the tests showed positive results, which confirmed that the method of manufacturing integral structures meets even the stringent requirements set by aviation.
PL
Współczesne konstrukcje lotnicze, a zwłaszcza konstrukcje nośne, wykonywane są niemal wyłącznie jako struktury cienkościenne, co doskonale realizuje wymóg minimalizacji masy samolotów. O ile miejscowa utrata stateczności pokrycia jest dopuszczalna w warunkach obciążenia eksploatacyjnego, o tyle przekroczenie granicznych obciążeń krytycznych elementów konstrukcyjnych (wręg, podłużnic) jest praktycznie równoznaczne ze zniszczeniem konstrukcji. Skuteczność rozwiązań konstrukcyjnych jest zapewniana przez rozwój nauki o materiałach i procesach obróbki oraz ciągłe doskonalenie procesów technologicznych. To pozwala na projektowanie złożonych, geometrycznie integralnych konstrukcji, które umożliwiają bardziej racjonalne wykorzystanie właściwości materiałów, a także - dzięki ich odpowiedniemu kształtowaniu - znaczne ulepszenie właściwości mechanicznych konstrukcji nośnych. Najważniejszą zaletą przemawiającą za zastosowaniem systemów integralnych jest efektywność ekonomiczna, uzyskana poprzez wyeliminowanie lub ograniczenie montażu. Gęsto użebrowane komponenty poprzez zmniejszenie ciężaru, jaki muszą przenosić, poprawiają parametry wytrzymałościowe konstrukcji nośnej. Zmniejszając grubość powłoki i jednocześnie wprowadzając odpowiednio gęsto podłużne elementy usztywniające, można uzyskać konstrukcje o znacznie wyższych dopuszczalnych wartościach obciążeń krytycznych, a w konsekwencji korzystniejszym rozkładzie gradientów i poziomów naprężeń. Przekłada się to bezpośrednio na zwiększenie trwałości zmęczeniowej. Zastosowanie nowych technologii wymaga przeprowadzenia badań wykazujących, że konstrukcje wytworzone w ten sposób są równie bezpieczne, jak te wytwarzane metodami konwencjonalnymi. W tym celu autorzy przeprowadzili badania wybranej konstrukcji lotniczej oraz weryfikację numeryczną MES i eksperymentalną na stanowisku badawczym. Wyniki testów potwierdziły, że sposób wytwarzania konstrukcji integralnych spełnia nawet rygorystyczne wymagania stawiane przez branżę lotniczą.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.