Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Imaging the tissue displacements caused by Acoustic Radiation Force Impulse (ARFI) provides qualitative tissue elasticity maps around the focus. To increase imaging range, multi-focus techniques combine several images obtained with different focal depths. Since the acoustic radiation force depends on focus depth, axial distance and steering angle, a normalization process is required before blending multi-focal ARFI images so that changes in the displayed displacements represent true tissue elasticity variations. This work analyzes the sources of displacement variability in multi-focal-zone ARFI and proposes a procedure to normalize and combine partial images. The proposal is based on the system focal configuration, transducer characteristics and global tissue parameters found by ultrasonic measurements. Performance of the proposed algorithm is experimentally evaluated with tissue mimicking phantoms.
EN
Breast cancer screening is based on X-ray mammography, while ultrasound is considered a complementary technique with improved detection in dense tissue. However, breast cancer screening requires a technique that provides repeatable results at the inspection interval which cannot be achieved with manual breast exploration. During the last years there have appeared several approaches to overcome this limitation by means of automated ultrasonic tomography performed with motorized probes or with a large set of array transducers. This work addresses these problems by considering a quite simple and low-cost arrangement, formed with a ring of conventional medical-grade array probes which are multiplexed to the electronics to build Full Angle Spatially Compounded (FASC) images. The work analyzes the performance of such arrangement in terms of resolution and isotropy, showing by numerical modelling and experimentally that it provides high resolution and homogeneity in the whole imaged region. The implementation of this technique would provide more than one circular FASC per second and a whole breast volume image in 1–2 minutes with conventional technology, a process fast enough to be clinically useful. Moreover, the automated technique is repeatable and can be used by the clinician to perform immediately the diagnosis without requiring additional data processing.
EN
Ultrasound is used for breast cancer detection as a technique complementary to mammography, the standard screening method. Current practice is based on reflectivity images obtained with conventional instruments by an operator who positions the ultrasonic transducer by hand over the patient’s body. It is a non-ionizing radiation, pain-free and not expensive technique that provides a higher contrast than mammography to discriminate among fluid-filled cysts and solid masses, especially for dense breast tissue. However, results are quite dependent on the operator’s skills, images are difficult to reproduce, and state-of-the-art instruments have a limited resolution and contrast to show micro-calcifications and to discriminate between lesions and the surrounding tissue. In spite of their advantages, these factors have precluded the use of ultrasound for screening. This work approaches the ultrasound-based early detection of breast cancer with a different concept. A ring array with many elements to cover 360. around a hanging breast allows obtaining repeatable and operator-independent coronal slice images. Such an arrangement is well suited for multi-modal imaging that includes reflectivity, compounded, tomography, and phase coherence images for increased specificity in breast cancer detection. Preliminary work carried out with a mechanical emulation of the ring array and a standard breast phantom shows a high resolution and contrast, with an artifact-free capability provided by phase coherence processing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.