Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An active method of vibration control of a smart sandwich plate (SSP) using discrete piezoelectric patches is investigated. In order to actively control the SSP vibration, the plate is equipped with three piezoelectric patches that act as actuators. Based on the classical plate theory, a finite element model with the contributions of piezoelectric sensor and actuator patches on the mass and stiffness of the sandwich plate was developed to derive the state space equation. LQR control algorithm is used in order to actively control the SSP vibration. The accuracy of the present model is tested in transient and harmonic loads. The applied piezoelectric actuator provides a damping effect on the SSP vibration. The amplitudes of vibrations and the damping timewere significantly reducedwhen the control is ON.
EN
Due to their impressive capacity of sensing and actuating, piezoelectric materials have been widely merged in different industrial fields, especially aeronautic and aerospace area. However, in the aeronautic industry, the structures are operating under critical environ-mental loads such as high and very low temperature, which made the investigation of the effect of thermal forces on the piezoelectric struc-tures indispensable to reach the high functionality and performance. The present paper focuses on the effect of thermal loads on the active vibration control (AVC) of structures like beams. For this purpose, a finite element model of composite beam with fully covered piezoelec-tric sensor and actuator based on the well-known high order shear deformation theory is proposed by taking into account the electrical po-tential field and a linear temperature field. Hamilton’s principle is used to formulate the electro-thermo-mechanical governing equations. The negative velocity feedback controller is implemented to provide the necessary gain for the actuator. Different analyses are effectuated to present the effect of the temperature ranging from -70°C to 70°C on the active vibration control of the composite beam.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.