Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this research, we investigated the effects of reduction atmospheres on the creation of the Mo-Si-B intermetallic compounds (IMC) during the heat treatments. For outstanding anti-oxidation and elevated mechanical strength at the ultrahigh temperature, we fabricated the uniformly dispersed IMC powders such as Mo5SiB2 (T2) and Mo3Si (A15) phases using the two steps of chemical reactions. Especially, in the second procedure, we studied the influence of the atmospheres (e.g. vacuum, argon, and hydrogen) on the synthesis of IMCs during the reduction. Furthermore, the newly produced IMCs were observed by SEM, XRD, and EDS to identify the phase of the compounds. We also calculated an amount of IMCs in the reduced powders depending on the atmosphere using the Reitveld refinement method. Consequently, it is found that hydrogen atmosphere was suitable for fabrication of IMC without other IMC phases.
EN
The green body and dense substrate of indium tin oxide was joined by uniaxially pressing at 0.3 MPa at 1300°C to test the restoring of the eroded part of transparent conducting oxide target. The green body was sintered to 98% of theoretical density under the suppression of shrinkage along the boundary below 5%. The boundary between two parts was free of pore but could be recognized from the difference in grain sizes. The joined part had the virtually same density with the substrate, but the grain size was less than one fifth compared with that of substrate.
3
Content available remote Finite element simulation of wheel impact test
EN
Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test) to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test. Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel. Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result. Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel fracture of forged aluminum wheel during impact test. Research limitations/implications: A standard impact load is used to carry out the test. For future study, a heavier striker or higher impact can be used to perform the test in order to produce the rupture at impact. Originality/value: In this study, the nonlinear dynamic finite element analysis is performed to simulate a forged aluminium wheel during SAE impact test. The structural damage parameter of the wheel is estimated by the strain energy density, and the fracture criterion is based on the total plastic work of the wheel material. Computer simulation of wheel impact test can significantly reduce the time and cost required to finalize a wheel design.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.