Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The misuse of frequency bands leads to a spectrum shortage. The cognitive radio appears as a natural solution to this problem. A good exploitation of the frequency spectrum starts with a good detection through various techniques, each with its advantages and limitations. In this paper we worked on improving the accuracy of spectrum sensing by developing a new cnn model and the transfer learning of data, also we used the automatic modulation recognition technique to insure the previous knowledge of data witch helped in improving the quality of detection and the performance of the cnn model. our method is based on three aspects entitled aspect1, aspect2 and aspect3. In aspect1 we trained the model to preform the modulation recognition with 11 classes. In aspect2 the model was trained with tow classes an performed the spectrum sensing. In aspect 3 we used the pre-trained model from aspect1 to perform the spectrum sensing with data from aspect2.We trained the model with many types of signals from the dataset RadioML2016.10a as well as noise data that we generated. We also use transfer learning strategies to improve the performance of the sensing model. The results show that we were able to achieve maximum accuracy of 97.22% for the sensing and 99 % for the modulation classification as best accuracy which is very competitive and better than many other proposed techniques
PL
Niewłaściwe wykorzystanie pasm częstotliwości prowadzi do niedoboru widma. Radio kognitywne jawi się jako naturalne rozwiązanie tego problemu. Dobra eksploatacja widma częstotliwości zaczyna się od dobrego wykrywania za pomocą różnych technik, z których każda ma swoje zalety i ograniczenia. W tym artykule pracowaliśmy nad poprawą dokładności detekcji widma poprzez opracowanie nowego modelu cnn i transferu uczenia się danych, a także wykorzystaliśmy technikę automatycznego rozpoznawania modulacji, aby upewnić się, że wcześniejsza wiedza o danych pomogła w poprawie jakości detekcji i wydajność modelu cnn. nasza metoda opiera się na trzech aspektach zatytułowanych aspekt1, aspekt2 i aspekt3. W aspekcie 1 wyszkoliliśmy model do wstępnego rozpoznawania modulacji z 11 klasami. W aspekcie 2 model został przeszkolony z klasami holowniczymi i wykonał wykrywanie widma. W aspekcie 3 wykorzystaliśmy wstępnie wytrenowany model z aspektu 1, aby przeprowadzić wykrywanie widma z danymi z aspektu 2. Wytrenowaliśmy model z wieloma typami sygnałów z zestawu danych RadioML2016.10a, a także wygenerowanymi przez nas danymi szumu. Używamy również strategii uczenia się transferu, aby poprawić wydajność modelu wykrywania. Wyniki pokazują, że byliśmy w stanie osiągnąć maksymalną dokładność 97,22% dla wykrywania i 99% dla klasyfikacji modulacji jako najlepszą dokładność, która jest bardzo konkurencyjna i lepsza niż wiele innych proponowanych technik.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.