Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the steady fully developed MHD flow of a viscous incompressible electrically conducting fluid through a channel filled with a porous medium and bounded by two infinite walls is investigated numerically for the cases (i) Poiseuille flow and (ii) Couette-Poiseuille flow; with uniform suction and injection at the walls in the presence of an inclined magnetic field. The Brinkman equation is used for the flow in the porous channel and solved numerically using the finite difference method. Numerical results are obtained for velocity. The effects of various dimensionless parameters such as Hartmann number (M), suction/injection parameter (S), permeability parameter (α) and angle of inclination (θ) on the flow are discussed and presented graphically.
EN
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangular duct under the action of an inclined magnetic field with a porous boundary has been investigated. The coupled partial differential equations are transformed into a system of algebraic equations using the finite difference method and are then solved simultaneously using the Gauss Seidal iteration method by programming in Matlab software. Numerical solutions for velocity, induced magnetic field and current density lines are obtained and analyzed for different values of dimensionless parameters namely suction/injection parameter (S), Hartmann number (M) and inclination angle (θ) and are presented graphically.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.