Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fly ash is a complex system with a variety of fine particles. The complex relationship between unburned carbon and ash particles has an important influence on the efficiency of fly ash triboelectrostatic beneficiation. The particles adhered to the two electrode plates are collected through the triboelectrostatic beneficiation experiment. The scanning electron microscopy and X-ray fluorescence are used to detect the microscopic differences between the particles of positive and negative plates. The results show that the flaky carbon particles in the raw ash and the ash particles larger than 4µm are more easily separated, while it is converse for the ash particles with particle size less than 4µm. With the particle size less than 4µm, it is gradually more obvious for the influence of adhesion caused by the roughness surface of spherical unburned carbon particles, and the surface pores structure of porous carbon particles. The binding structure between unburned carbon and ash particles is complex and changeable. It is not beneficial to improve the separation efficiency. Therefore, the micro-structure and micro-morphology have an important effect on fly ash triboelectrostatic beneficiation. Some suggestions were proposed from the microscopic point to improve the efficiency of fly ash triboelectrostatic beneficiation.
EN
Triboelectrostatic beneficiation is an effective technique to remove unburned carbon from fly ash. The purpose of this study is to enhance the particles tribocharging, and improve the efficiency of removal unburned carbon from fly ash using electrical heating. An experimental system with electrical heating was established to realize the tribocharging measurement and fly ash triboelectrostatic beneficiation. The experimental material collected from a thermal power station was fly ash with an average loss on ignition of 20.76%. The operating conditions were electric field voltage of 40KV and air flow rate ranging from 1.7 to 4.25 m/s. The influence of heating temperature and heating position on tribocharging and triboelectrostatic beneficiation was discussed. The feasibility of electrical heating was evaluated by the charge-to-mass ratio (CMR), loss on ignition (LOI) and removal unburnt carbon rate (RCR). The results indicate that the increasing of collision probability for heated particles can improve the charging efficiency. The heating temperature related to gas moisture content and particles dielectric constant is inversely proportional to the LOI of ash, whereas it is opposite for the RCR. The heating position has an effect on the CMR and RCR because of changed contact time between charged particles and compressed air. The optimum conditions are the air flow rate of 4.25 m/s, heating temperature of 90℃. Heating tube III is suitable to install electrical heating system. The electrical heating is proved to be effective to improve the efficiency of fly ash triboelectrostatic beneficiation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.