The aim of this work was to investigate the effect of partial substitution of Mn by Nb on structure and thermomagnetic properties in the (Mn, Nb)-Co-Ge alloy. The master alloys were prepared by arc-melting in an arc furnace with high purity of constituent elements under a low pressure of Ar. The prepared specimens were studied in as-cast state. The X-ray was performed by BRUKER D8 Advance diffractrometer with Cu Kα radiation. The analysis of the XRD pattern revealed coexistence of two orthorhombic phases with different lattice constants. The analysis of the temperature dependence of magnetizaton confirmed the XRD results and showed that produced material manifested two magnetic phase transitions corresponding to detected phases. The values of the Curie temperature were 275 and 325 K. The values of magnetic entropy change ∆SM equaled 3.30 and 2.13 J/(kg K), respectively for recognized phases. Biphase structure of produced material allowed to reach relatively high refigeration capacity 307 J/(kg). Moreover, the analysis of field dependences of magnetic entropy change (∆SM = CBn) allowed to construct temperature dependence of exponent n. The analysis of elaborated n vs. T curve confirmed biphasic structure of produced material.
In the past decades, Mg alloys have been studied intensively as potential orthopedic applications. The present research work, the FEA of the obtained contact stresses in the case of the load applied on Mg-0.5Ca-xMn alloys has been investigated. It has been used the NCB Curved Femur Shaft Plate type as a model in order to establish the necessary modeling parameters. The objective of the present work was to highlight the strain values at the contact point on the surface of the Mg-0.5Ca-xMn alloys. The results showed that the highest stresses observed near the gaps of the plate and in the screws. It means that all mechanical loads are sustained by the plate and screws, and the patient’s femur can be recovered.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.