Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Opracowanie dotyczy projektu systemu pionowego startu rakiety z wykorzystaniem sterów gazodynamicznych. Celem pracy było szczegółowe zbadanie metody dającej możliwość efektywniejszego wykorzystania materiałów pędnych w pierwszej fazie lotu pocisku, co pozwala na zwiększenie zasięgu i optymalizację toru lotu. W projektowanym systemie pocisk wyrzucany jest pionowo, obracany do żądanego położenia przy użyciu silników korekcyjnych, po czym następuje uruchomienie silnika marszowego. Skoncentrowano się na badaniu dynamiki i sterowalności pocisku przy małych prędkościach. Opisano model fizyczny i matematyczny obiektu uwzględniający nieliniowości związane z dynamiką samej rakiety, zaburzenia powstałe przy uruchamianiu silnika rakietowego jak również niektóre ze zjawisk aerodynamiki nieustalonej. Przedstawiono sposób identyfikacji charakterystyk aerodynamicznych rakiety oraz algorytm sterowania silnikami korekcyjnymi. Przygotowany matematyczny model rakiety posłużył do stworzenia środowiska symulacyjnego. Przedstawiono wyniki symulacji numerycznych w postaci wykresów i zestawień.
EN
The paper deals with a concept of a missile vertical launch system using reaction control jets. The purpose of the study was a detailed investigation of a method optimizing fuel consumption in the first phase of the missile flight to increase the range and optimize the flight path. In the designed system the missile is ejected vertically and turned to the desired position by using corrective engines before the sustainer motor is started. The dynamics and controllability of the missile at low velocities were studied. The physical and mathematical model of the object has been described, taking into account the nonlinearities connected with the dynamics of the rocket itself, the disturbances caused by firing the rocket engine as well as some effects the unsteady aerodynamics. A method identifying the aerodynamic characteristics of the missile and an algorithm controlling the correction engines is presented. A prepared mathematical model of the missile was used to create a simulating environment. The results of numerical simulations in the form of graphs and tables are presented.
2
Content available Navigation for Satellite Formation Flying
EN
This paper deals with the case of a target satellite in an unknown orientation and location with respect to the master satellite. Feature based monocular pose estimation vision system was presented. The results of analysis, implementation and testing of simulation intended for vision-based navigation applications such as rendezvous of satellites and formation flying are shown. The mobile robot was used as the platform for the vision system. Pose estimation algorithms were implemented in Matlab environment. It was obtained that the proposed method is robust on varying and low light conditions.
3
Content available Simulation study of a missile cold launch system
EN
In this paper the missile flight dynamics during the launch phase is studied. The main concept behind this work was to use a vertical cold launch system and the rapid pitch maneuver to achieve longer missile range and better firing coverage. A set of a small pulse rocket engines was used to obtain the desired missile attitude. The physical and mathematical models of the missile are described. The pulse jets control algorithm is presented. The computer program of the missile model has been developed in the Simulink environment. The missile behavior in the low-speed flight envelope has been examined. The results of numerical simulations in the form of the graphs are presented. It has been obtained that there exist several benefits of the cold launch method as increased range and higher target kill probability.
4
Content available Miniature bomb concept for unmanned aerial vehicles
EN
This paper presents the design methodology of a small guided bomb for Unmanned Aerial Vehicles. This kind of next-generation munition has recently gained a lot of attention in the military market. The bomb is planned to be equipped with inertial measurement unit and infrared seeker.The nose shape and fin optimization procedure was described shortly. Aerodynamic characteristics were calculated by means of theoretical and engineering-level methods. The flight dynamics model of the bomb was obtained and implemented in Simulink software. The numerical simulations of uncontrolled and controlled trajectories were compared. The results indicate that the usage of such a guided small munition, like the designed bomb, might improve significantly the offensive capabilities of Unmanned Aerial Vehicles.
5
Content available Vision based navigation for satellite docking
EN
This article deals with the situation of a space debris or not working satellite in an unidentified pose with respect to the master satellite. Feature based monocular pose estimation vision system was presented. The results of numerical simulation were described. The results of implementation and testing of simulation intended for vision-based navigation applications such as rendezvous of satellites and formation flying is shown. In this document markerless local features based navigation system has been studied. The proposed vision navigation system satellites are able to determine the position and orientation of a target in relation to the coordinate system of the camera. It relates from the time when the satellite is visible as a small object until docking with the chaser. A modified algorithm soft Position Iterations was used to estimate the pose of the target. Visual navigation system uses a single camera. The impact of changes in illumination of the object was analysed. In order to reproduce the space conditions the laboratory stand was built. The developed method was tested experimentally for different scenarios approach satellites to each other. Comparing the ground truth position and orientation and the results obtained with the aim of vision navigation system it is worth nothing to observe accuracy of the developed method. Achieved satisfactory performance of the algorithm.
6
EN
In the paper, influence of control surface failures on UAV aircraft dynamics is investigated. A method for control loads determination for a nonlinear UAV aircraft model is presented. The model has been developed to analyse the influence of various control surface failures on aircraft controllability and to form the background for developing reconfiguration methods of flight control systems. The analysis of the control system failure impact on the aircraft dynamics and the ability of the control system to reconfiguration are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.