Development of the automotive industry, including so-called dowsizing and rightsizing, entails the need to ensure, and hence to verify, the stringent cleanliness levels of an increasing number of car components. The assurance of proper cleanliness level requires knowledge of the entire production process and precise information on the contaminants that will allow to identify their sources. Obtaining reliable cleanliness information requires establishing of many different factors, i. a. selection of proper contamination extraction and collection technique, proper parameters of extraction, validation of extraction procedure, methods of particles analysis. Analytical techniques which are implemented include gravimetric, optical microscopy and advanced techniques like scanning electron microscopy. This work present’s actual state of knowledge regarding technical cleanliness analysis of components. Important aspects of QA&QC in technical cleanliness assessment are also discussed.
Efforts to improve engine cooling efficiency by usage of heat exchanger as well as research on cooling fluids composition and properties are well described. Studies on heat exchangers are focused mainly on their durability properties, while cooling fluids’ development is lately concentrating on nanofluids. In this paper physicochemical properties changes of diluted glycol-based cooling fluid in a long-term durability test of vehicle heat exchanger, were investigated. Following parameters were measured: density of coolant, pH value, elements content in coolant, and reserve alkalinity. Above mentioned analyses were performed on samples collected both in the beginning and periodically after every 500 hours of durability test which lasted for 3000 hours in total. The performed study leads to conclusion that interaction of cooling fluid with material of heat exchanger and changes in glycol composition during long-lasting durability test allows to determine aging effect of applied glycol solution on heat exchanger wear.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.