Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Resonant Switch (RS) model of twin high-frequency quasi-periodic oscillations (HF QPOs) observed in neutron star binary systems, based on switch of the twin oscillations at a resonant point, has been applied to the atoll source 4U 1636-53 under assumption that the neutron star exterior can be approximated by the Kerr geometry. Strong restrictions of the neutron star parameters M (mass) and a (spin) arise due to fitting the frequency pairs admitted by the RS model to the observed data in the regions related to the resonant points. The most precise variants of the RS model are those combining the relativistic precession frequency relations with their modifications. Here, the neutron star mass and spin estimates given by the RS model are confronted with a variety of equations of state (EoS) governing structure of neutron stars in the framework of the Hartle-Thorne theory of rotating neutron stars applied for the observationally given rotation frequency frot≈580 Hz (or alternatively frot≈290 Hz) of the neutron star in 4U 1636-53. It is shown that only two variants of the RS model based on the Kerr approximation are compatible with two EoS applied in the Hartle-Thorne theory for frot≈580 Hz, while no variant of the RS model is compatible for frot≈290 Hz. The two compatible variants of the RS model are those giving the best fits of the observational data. However, a self-consistency test by fitting the observational data to the RS model with oscillation frequencies governed by the Hartle-Thorne geometry described by three spacetime parameters M,a and (quadrupole moment) q related by the two available EoS puts strong restrictions. The test admits only one variant of the RS model of twin HF QPOs for the Hartle-Thorne theory with the EoS predicting the parameters of the neutron star M≈2.10 M⊙, a≈0.208, and q/a2≈1.77.
2
Content available remote Observational Tests of Neutron Star Relativistic Mean Field Equations of State
EN
Set of neutron star observational results is used to test some selected equations of state of dense nuclear matter. The first observational result comes from the mass-baryon number relation for pulsar B of the double pulsar system J0737-3039. The second one is based on the mass-radius relation coming from observation of the thermal radiation of the neutron star RX J1856.35-3754. The third one follows the population analysis of isolated neutron star thermal radiation sources. The last one is the test of maximum mass. The equation of state of asymmetric nuclear matter is given by the parametrized form of the relativistic Brueckner-Hartree-Fock mean field, and we test selected parametrization that represent fits of full relativistic mean field calculation. We show that only one of them is capable to pass the observational tests. This equation of state represents the first equation of state that is able to explain all the mentioned observational tests, especially the very accurate test given by the double pulsar even if no mass loss is assumed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.