Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the modeling, control and simulation of an electric vehicle with four in-wheel 15 kw induction motors drive 4WDEV controlled by a direct torque control DTC strategy, where two control techniques are presented and compared for controlling the electric vehicle speed: the first one is based on a classical PI controller while the second one is based on a fuzzy logic controller (FLC). The aim is to evaluate the impact of the proposed FLC controller on the efficiency of the 4WDEV taking into account vehicle dynamics performances, autonomy and battery power consumption. When the classical controller can’t ensure the electric vehicle stability in several road topology situations. To show the efficiency of the proposed new control technique on the traction system by 4WDEV. The vehicle has been tested in different road constraints: straight road, sloping road and curved road to the right and left using the Matlab / Simulink environment. The analysis and comparison of the simulation results of FLC and PI controllers clearly show that the FLC ensures better performances and gives a good response without overshoot, zero steady state error and high load robustness rejection, compared to the PI controller which is present an overshoot equal 7.3980% and a rise time quite important (0.2157 s with PI controller and 0.1153 s with FLC). As well as the vehicle range has been increased by about 10.82 m throughout the driving cycle and that the energy consumption of the battery has been reduced by about 1.17% with FLC.
EN
The most problem of direct torque control are high torque ripple and Settling time to overcome this problem an efficiency Backstopping speed controller are proposed. This paper makes a comparison of the effectiveness of three PI speed controller based direct torque control, the first one is the classical PI speed controller (CL-PISC), the second are no Adaptive Backstepping controller (NABACKSC), and the third type are adaptive fuzzy PI controller (AF-PISC). The parameters of adaptive fuzzy PI are dynamically adjusted with the assistance of fuzzy logic controller. The non-Adaptive Backstopping controller is designed based on the Lyapunov stability theorem. The direct torque control is very adapted for electric propulsion systems; we apply this new strategy for an 15 Kw induction motor. The proposed PI controllers are simulated in MATLAB SIMULINK environment. The simulation results confirmed that the NA-BACKSC, present robust and the best dynamic behavior on direct torque control compared to AF-PISC and CL-PISC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.