There are investigated minimal actions of countable groups on the Cantor cube of weight continuum. In particular there is shown that for every countable abelian group G there exists a homomorphism pi of G into the group Homeo(D^2omega) of all homeomorphisms of the Cantor cube D^2omega onto itself such that for every x is a member of a set D^2omega the orbit {pi{g)(x):g is a member of a set G} is dense in the cube.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.