In orthopedic surgery and more particularly in total hip arthroplasty, the fixation of implants is usually done with surgical cement consisting essentially of polymer (PMMA). Fractures and loosening appear after a high stress gradient. The origin of this phenomenon is the presence of micro–cavity located in the volume of PMMA. The aim of this study is to investigate the effect of the interaction between two cavities on the cement damage where the external conditions (loads and geometric forms) can cause the fracture of the cement and therefore aseptic loosening of the prosthesis. A numerical model is generated using finite element method to analyze the damage of orthopedic cement around the microcavity and estimate the length of the crack emanating from microcavity for each position of the human body. Result show that the damaged area is influenced by the cavity shape (only elliptical cavity shape can initiate damage). The most dangerous cavity position is located in the middle of the cement socket, on the axis of the loading. The distance between two cavities has an effect if it is less than 100 μm. One can estimate the initiation of a crack of maximum length of 16μm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.