Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aimed to investigate the capability of the one-dimensional (1D) mode of the Simulating WAves till SHore (SWASH), as a non-hydrostatic wave-flow model with six vertical layers, to reproduce the cross-shore wave evolution. For this purpose, the given model was initially calibrated for wave energy and the outputs were then verified with the field data measured at the Southern Caspian Sea. The calibration coefficients obtained for wave breaking are significantly less than the ones which have been mostly reported in previous studies for the two-dimensional (2D) mode of the SWASH. Although the reproduced wave height parameters are generally in good accordance with the field observations, the period parameters and the number of waves are overestimated and underestimated by the model, respectively. Moreover, the inaccuracies at the shallow stations are worse than at the transitional depths. The overestimation in both the reproduced energy of infragravity waves (IG) and their wavelength along with the underestimation in the wind-wave energy content are also among the factors responsible for the model deficiencies. The findings have revealed that the overestimation of the reproduced IG waves is the main reason for the underestimation of the breaking dissipation rate for irregular wave trains in the 1D mode. Therefore, more intensive breaking dissipation via selecting lower coefficient values is necessary to exhaust a certain energy content from longer waves in the 1D mode. This approach ultimately induces an over-dissipation of short wind-waves.
EN
This paper presents the results of a laboratory experiment on transmission, reflection, and dissipation of irregular waves over smooth impermeable submerged breakwaters. Experiments included 75 JONSWAP-based irregular waves with five different wave characteristics generated at three water depths in a 2D wave flume. The investigated breakwater sections were three rectangular breakwaters with different widths, a toothed rectangular breakwater, and a trapezoidal breakwater with a slope of 1:2. A new comprehensive dimensionless parameter (β) was proposed representing both wave hydrodynamic and breakwater geometry characteristics. This parameter could be employed as a suitable descriptive option to make an accurate estimate of the hydraulic performances of submerged breakwaters. The β parameter is composed of four conventional simple dimensionless variables. However, the results revealed that the relative submergence depth significantly affects the hydraulic responses of submerged breakwaters. The transmission, reflection and dissipation of waves show a logarithmic growth, a logarithmic reduction, and a quadratic decreasing trend against the increasing of β parameter, respectively. The verifications of results revealed the high efficiency of β parameter for data reported by Carevic et al. (2013) with R2 = 0.88 and high agreement with predictions made by Van der Meer et al. (2005) formulation with R2 = 0.93.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.