Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study explores the influence of variables like particle size of coal, load, speed and sliding distance on weight loss in manganese-steel (Mn-steel). The observations are made using pin-on-disc apparatus. Specimen prepared from Mn-steel used for the wear test. The size and shape of specimen is in accordance with ASTM G99 standard. From design of experiment (DOE) procedure the variables load were altered to assess the weight loss in material. It is observed that with the increase in particle size and load, the weight loss increases when other variables are constant. Mn-steel shows decrease in weight loss at higher load due to property of dipole interaction and stacking fault energy (SFE). Decrease in weight loss at higher load results in transition in wear mechanism from scratch to groove formation as observed under field emission scanning electron microscope (FESEM).
2
Content available remote ZnO thin film as methane sensor
EN
Methane (CH4) sensitivity of zinc oxide (ZnO) thin film has been studied in the present work. The sensor element comprises of a chemically fabricated ZnO semiconducting layer and a layer of palladium (Pd) as catalyst. The catalyst layer was formed on the surface of semiconducting ZnO following a wet chemical process from palladium chloride (PdCl2) solution. Fundamental features of a sensor element e.g. sensitivity, response time and recovery process has been studied. The effect of operating temperature on performance of the sensor material has been investigated and a choice of optimum temperature was made at around 200°C. The sensor element exhibited reasonable sensitivity of about 86% at this temperature in presence of 1 vol% methane (CH4) in air.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.