Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The authors have deposited the diamond-like carbon (DLC) films by radio frequency inductively coupled plasma enhanced chemical vapor deposition (RF ICP PECVD) method. The investigated DLC films with different sp3 fraction content were deposited on polished and textured silicon substrates. The sp3 fraction content of the deposited DLC films was ranging from 35 % to 70 % and was estimated from acquired Raman scattering spectra (excitation wavelength: 325 nm and 514.5 nm). The measurements of field emission characteristics were carried out in diode configuration. Emission properties of the DLC films were calculated from Fowler-Nordheim plots. The calculated electric field enhancement factor β was ranging from 56 to 198 for the DLC films deposited on polished substrates and from 115 to 445 for films deposited on textured substrates. The surface of the DLC films was observed by scanning electron microscope (SEM) after field emission measurements. The acquired SEM images reveled that the activation of field emission from the DLC films is connected with generation of structural damage to the DLC films.
EN
The diamond-like carbon materials have unique mechanical, optical, electrical and chemical properties. The material is commonly applied in automotive industry, medicine and in other everyday life products. However, the diamond-like carbons are not used in micro- and optoelectronics on a wider scale due to technological problems. The application of the diamond-like carbon films in electronic structure is limited because the standard methods do not ensure that the quality and properties of the deposited film will be satisfactory for a specific application. On the other hand, more sophisticated methods that allow manufacturing the diamond-like carbon film with adequate properties, such as microwave assisted chemical vapour deposition, require heating of the substrate to high temperature (above 1000°C). The solution to the problem is the radio frequency inductively coupled plasma enhanced chemical vapour deposition method that allows deposition of the diamond-like carbon films with satisfactory properties and the process can be carried out at room temperature. In the paper, basic information and issues concerning the diamond-like carbon films manufacturing technology by radio frequency inductively coupled plasma enhanced chemical vapour deposition method will be explained. The diamond-like carbon films were investigated by the Raman scattering spectroscopy and the spectroscopic ellipsometry.
EN
In this study, the authors deposited silicon oxynitride films by Radio Frequency Plasma Enhanced Chemical Vapour Deposition (RF PECVD) method. The research explores the relationship between the deposition process parameters and the optical properties of the deposited SiOxNy films. The optical constants of SiOxNy films were measured and calculated by spectroscopic ellipsometry method. Additionally, the authors investigated the possibility of controlling the deposited film composition by the flow ratio of different gaseous precursors: ammonia (NH3), diluted silane (2%SiH4 /98%N2), nitrous oxide (N2 O) and nitrogen (N2). The gas mixture introduced to the working chamber during the growth of the film has the influence on the Si–O and Si–N bonds formation and the ratio between these bonds determines the refractive index of the deposited film.
EN
The work presents the results of a research carried out with PlasmaLab Plus 100 system, manufactured by Oxford Instruments Company. The system was configured for deposition of diamond-like carbon films by ICP PECVD method. The change of an initial value of DC bias was investigated as a function of set values of the generator power (RF generator and ICP generator) in the constant power of the RF generator operation mode. The research shows that the value of DC bias nearly linearly depends on the RF generator power value and is affected only in a small degree by the power of ICP discharge. The capability of an installed OES spectrometer has been used to ensure the same starting conditions for the deposition processes of DLC films. The analysis of OES spectra of RF plasma discharge used in the deposition processes shows that the increase in ICP discharge power value results in the increased efficiency of the ionization process of a gaseous precursor (CH4). The quality of deposited DLC layers was examined by Raman spectroscopy. Basing on the acquired Raman spectra, the theoretical content of sp3 bonds in the structure of the film was estimated. The content is ranging from 30% to 65% and depends on ICP PECVD deposition process parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.