The escalating global population and subsequent demand for agricultural products have led to a surge in agricultural waste generation, posing significant disposal challenges. Conventional disposal methods such as burning and dumping not only harm the environment but also jeopardize human health and safety. Recognizing the urgent need for sustainable waste management, researchers have increasingly focused on repurposing agricultural plant waste as a valuable resource. This paper presents a comprehensive review of the potential of agricultural plant waste in wealth creation and sustainable development. It highlights the detrimental impacts of current disposal methods and emphasizes the necessity for alternative approaches. By analysing the physical, mechanical, and chemical properties of plant fibers, particularly cellulose, hemicellulose, and lignin, this review underscores their suitability for diverse applications. Moreover, it explores the emerging trend of utilizing pineapple leaf fiber, a sustainable and lightweight material, in structural applications such as UAV construction. With its exceptional mechanical properties and biodegradability, pineapple leaf fiber holds promise as a viable alternative to traditional materials, contributing to a more sustainable future. In conclusion, this review advocates for a paradigm shift towards embracing agricultural plant waste as a valuable asset for economic prosperity and environmental sustainability. It underscores the importance of continued research and technological advancements to unlock the full potential of agricultural waste in fostering a circular economy and driving sustainable development globally.
A mathematical model is presented for investigating the temperature field caused by the rotary friction welding of dissimilar metals. For this purpose, an axisymmetric, nonlinear, boundary value problem of heat conduction is formulated with allowance for the frictional heating of two cylindrical specimens of finite length made of Al 6061 aluminium alloy and 304 stainless steel. The thermo-physical properties of materials change with increasing temperature. It was assumed that the coefficient of friction does not depend on the temperature. The mechanism of heat generation due to friction on the contact surface with the temperature field of samples is considered. The boundary problem of heat conduction was reduced to the set of nonlinear ordinary differential equations at time t relative to the values of temperature T at the finite elements nodes. The numerical solution of the problem was obtained with the inverse 2nd order differentiation method implemented in COMSOL FEM system (finite element method), with time step ∆t=0.1 (s). The influence of various values of friction coefficient is presented.
This paper describes findings in the surface topography of Ti6Al4V alloy after finish turning process under dry and MQL (minimum quantity lubrication) machining. The research was fulfilled in the range of variable feeds per revolution of 0.005-0.25 mm/rev and cutting speeds of 40-100 m/min using the depth of cut of 0.25 mm that fits finish processing conditions. The test plan was developed on the way to use the Parameter Space Investigation (PSI) method. The topography features were measured by a Sensofar S Neox optical profilometer using the Imaging Confocal Microscopy technique. Ra parameters and surface roughness profiles as well as 2D images and contour maps were analyzed. Under the studied machining conditions, lower Ra roughness parameters are obtained in the feed rate of 0.005-0.1 mm/rev and cutting speeds of 40-60 m/min. In comparison with dry machining, up to 17% reduction in Ra parameter values was obtained using the MQL method and vc = 70 m/min and f = 0.127 mm/rev as well as vc = 47.5 m/min and f = 0.22 mm/rev. Depending on the machining conditions, peaks and pits as well as feed marks typical for the turning process are observed on the machined surfaces.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.