Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of this work consists of researches of surface topography and optical properties of organic thin films of NiPc : PTCDA blends deposited by thermal evaporation from one source. Thin films of organic materials are provided as donor/acceptor couple in heterojuction solar cells. Design/methodology/approach: Films consisting of NiPc and PTCDA mixture were deposited by thermal evaporation from one source. By using blends with different PTCDA to NiPc ratios and steering the temperature of the sources and hence deposition rate different properties of layers are obtained. Findings: Both the chemical composition and technological parameters of deposition process has appeared to influence on optical properties and surface morphology of thin films. These parameters were found to influence surface morphology and UV-Vis absorption spectra. Research limitations/implications: The paper shows the methodology of deposition NiPc/PTCDA donor/ acceptor blends and the influence of evaporation parameters on properties of thin films. That can be used for the research of the planar heterojunction solar cells based on NiPc/PTCDA heterojunction donor-acceptor couple active layers. Practical implications: Results of researches suggest that blends of NiPc and PTCDA can be useful materials in organic photovoltaic device. However right deposition parameters and the blends proportions determine the properties of NiPc/PTCDA donor/acceptor thin films. Originality/value: The goal of this paper is to definie the surface topography and optical properties of thin films NiPc/PTCDA blends prepared with different proportions of components and parameters of evaporation process.
EN
Purpose: The aim of this work is studying surface topography and optical properties of organic thin films of TiOPc and PTCDA blends deposited by thermal vacuum evaporation. Design/methodology/approach: Thin films of blends of organic materials are provided as donor/acceptor couples in bulk heterojunction based organic solar cells. Thin films of TiOPc - PTCDA mixture have been deposited by thermal vacuum evaporation from one source with various ratios of blends components and deposition rates used. Both the chemical composition and technological parameters of the deposition process have appeared to influence on optical properties, UV-Vis absorption spectra in particular, and surface morphology of the as-prepared thin films. The paper reveals the methodology of deposition thin films of TiPc-PTCDA donor/ acceptor blends and the influence of deposition parameters on their properties. Findings: Thin films of such blends can be used for the research on the planar heterojunction solar cells based on donor-acceptor couple active layers. Results of these investigations suggest that blends of TiOPc and PTCDA can be suitable materials for preparing organic photovoltaic devices. Research limitations/implications: Deposition parameters and proportions of the blend components used determine the properties of TiOPc/PTCDA thin films. Originality/value: The goal of this paper is also to define relations connecting the surface morphology and optical properties of thin films of TiOPc-PTCDA blend prepared with their composition and parameters of the evaporation process.
3
Content available remote CLSM and UV-VIS researches on polyoxadiazoles thin films
EN
Purpose: The purpose of this paper was to analyse the surface morphology and optical properties of polyoxadiazoles thin films. Design/methodology/approach: A few different conducting polymers were dissolved in N-methyl-2-pyrrolid(in)one. Then the solutions were deposited on a glass substrate by spin coating method with a different spin rate. Changes in surface topography and optical properties were observed. A confocal laser scanning microscope CLSM Zeiss LSM 5 Exciter has been used. Photos have been taken from area of 120 x 120 microns. Findings: The analysis of images and spectra has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the optical properties. The spin rate has got a strong impact on them. Research limitations/implications: The morphology and optical properties of polyoxadiazoles thin films has been described. This paper include description how the spin rate influence on the polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a high internal transmission density. Further research of polymer thin films are recommended. Practical implications: The spin coating method allows to deposit a uniform thin films. It is important to know how the spin rate influence on the thin films properties. It is also important to find a new use for this group of material engineering in photovoltaic or optoelectronics devices. Originality/value: The good properties of thin films make them suitable for various applications. The value of this paper is defining the optimal parameters of spin-coating technology for polyoxadiazoles thin films. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which are obligated to have the same thickness over the whole surface.
4
Content available remote Surface morphology of thin films polyoxadiazoles
EN
Purpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used. Photos have been taken in noncontact mode while observing an area of 10 x 10 microns. Findings: The analysis of images has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the surface roughness. The speed of the spin has got a strong impact on the topography of the thin films obtained. Research limitations/implications: The morphology of polyoxadiazoles thin films has been described. This paper include description how the spin speed influences the morphology of polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a uniform thickness and a low surface roughness. Further research, in which the optical properties of thin films are investigated, is strongly recommended. Practical implications: Conductive polymers may find applications in photovoltaics or optoelectronics. It is important to study this group of material engineering and to find a new use for them. Materials from which thin films are made of will have an impact on the properties and characteristics of electronics devices in which they are be applied. Originality/value: The value of this paper is defining the optimal parameters of spin-coating technology for six polyoxadiazoles. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which are obligated to heve the same thickness over the whole surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.