Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.
EN
The interferogram containing the noises often affects the accuracy of phase retrieval, leading to the degradation of the phase imaging quality. To address this issue, a new interferogram blind denoising (IBD) method based on deep residual learning is proposed. In the presence of unknown noise levels, during the training, the deep residual convolutional neural networks (DRCNN) in the IBD approach is able to remove the latent clean interferogram implicitly, and then gradually establish the residual mapping relation in the pixel-level between the interferogram and the noises. With a well-trained DRCNN model, this algorithm can deal not only with the single-frame interferogram efficiently but also with the multi-frame phase-shifted interferograms collaboratively, while effectively retaining interferogram features related to phase retrieval. Simulation and experimental results demonstrate the feasibility and applicability of the proposed IBD method.
EN
To improve the measuring accuracy in two-step phase-shifting interferometry (PSI), a new approach combining the extreme value of interference (EVI) and the least-squares iterative algorithm (LSIA) is proposed to extract the phase from two-frame blind phase-shifting interferograms. This method first evaluates the phase shift between two interferograms by the EVI algorithm, and then constructs the fitted interferogram by the addition of two interferograms after filtering the corresponding background intensities, so the phase with high precision can be retrieved by combining two real interferograms and this fitted interferogram using the LSIA method. The proposed algorithm expands the flexibility of the LSIA method and has the high-precision performance compared with the existing algorithms in two-step PSI. Simulation and experiment are performed to verify the feasibility of the proposed algorithm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.