Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Badania Rzeki Waldemara w sezonie letnim 2009 objęły wybrane cechy reżimu odpływu ze zlewni zlodowaconej, takie jak: zmienność przepływu w czasie, określenie prędkości płynięcia wody oraz transportu zawiesiny. Podjęto próbę oceny zmienności natężenia przepływu rzeki w sezonie letnim, a także w cyklu dobowym. Pomiary wykonywano w odcinku górnym i ujściowym rzeki. Rzeka Waldemara wypływa z Lodowca Waldemara. Jest to typowa rzeka roztokowa, posiadająca w swojej zlewni wiele koryt. Średni przepływ w sezonie letnim 2009 roku wyniósł w górnym odcinku 0,85 m3źs-1, natomiast w odcinku ujściowym 0,67 m3źs-1. Zmienność przepływu w czasie była uzależniona od temperatury powietrza, a w mniejszym stopniu od opadów deszczu. Są to czynniki, które mają najważniejszy wpływ na wielkość topnienia lodowca, czego efektem jest zasilanie rzeki lodowcowej. Jednakże zmienność natężenia przepływu w dużym stopniu uzależ-niona jest również od czynników niemeteorologicznych, takich jak na przykład skomplikowany drenaż i odpływ wewnątrzlodowcowy, czy też struktura hydrotermiczna lodowca.
EN
The river network of the Kaffiřyra Region is formed by river systems draining individual glaciers. In their drainage areas they often create the heavy, complicated system of channels. Flows are mainly fed with waters coming from ablation of glaciers, and next with waters coming from melting permafrost and melting patches of snow on the plain and mountains slopes. It is characteristic that the Kaffiřyra’s river network exist only in the period of the polar summer, as well as is changing during one season. The main aim of the project was the analysis of the outflow from the drainage area of the Waldemar River, the temporal changeability of the outflow, as well as short-term changes of the rate of flow (daily and hourly changeability) Hydrological characteristics of the river were analysed relating to weather conditions, as well as the size of glacier ablation. The another aim was suspended sediment transport. The catchment of the Waldemar River belongs to smallest and occupies the area about 4 km2, from what 62 % constitutes the Waldemar Glacier. The first measurements point was located in the area of the leakage of the river for the outwash plain, in the distance of the about 500 m from the front of the glacier. The length of the Waldemar River is an about 1 km to this place. From this place the river has braided character. The other measurements point was located in the river mouth area, about 20 m from the sea. From about 3 963 645 m3 in the Waldemar River in 2009, 64% comes from surface ablation on the Waldemar Glacier. During the years 1996-2005 this share was accounted for 26 to 81%. The other most important sources of river feeding comprise melting of icings, precipitation and water runoff down the surrounding slopes.
PL
Ciągi obserwacyjne zlodzenia na Wiśle i Niemnie należą do najdłuższych na świecie, a najstarsze zachowane wyniki obserwacji zjawisk lodowych na Wiśle pochodzą z lat 20. XVIII wieku (Makowski i Tomczak, 2002; Mroziński, 2006). Najdłuższą serię obserwacji hydrologicznych w Polsce ma Toruń (Mikulski, 1965). Podobną serię ma Niemen w miejscowości Smolniki. Od 1811 r. prowadzi się tutaj nieprzerwane obserwacje stanów wody i zjawisk lodowych (Stonevicius i in., 2008).
EN
Countries data intervals for ice cover on the Vistula and Nemunas Rivers are among the longest in the world, and the oldest preserved results of the ice phenomena on Vistula observations date from the twenties of the 17th century (Makowski and Tomczak, 2002; Mroziński, 2006). The longest series of hydrological observations in Poland has been carried out in Toruń (Mikulski, 1965). A similar series exist for Nemunas in Smolniki. Continuous observations of water levels and ice phenomena started there in 1811 (Stonevicius et al., 2008).
3
PL
W artykule przedstawiono zmienność czasu trwania pokrywy lodowej na 17 dużych rzekach Arktyki. W drugiej połowie XX wieku czas trwania pokrywy lodowej uległ wyraźnemu skróceniu o 21-28 dni na 100 lat. Na czterech rzekach (MacKenzie, Pieczenga, Peczora, Titowka i Taz) czas trwania pokrywy lodowej uległ wydłużeniu nawet o 33 dni na 100 lat. Skrócenie czasu trwania związane jest z późniejszym formowaniem się pokrywy lodowej oraz z jej wcześniejszym rozpadem. Należy przypuszczać, że zmienność czasu trwania zjawisk lodowych jest dobrym wskaźnikiem zachodzących w Arktyce zmian klimatu. Ze skróceniem czasu trwa-nia zjawisk lodowych wiąże się wydłużenie okresu nawigacyjnego.
EN
Trends and fluctuations in the dates of ice cover formation and breakup on selected rivers in the Arctic worked out based on databases: Benson B., Magnuson J., 2000, Global lake and river ice phenology database; Vuglinsky V., 2000, Russian river ice thickness and duration; National Snow and Ice Data Center, 1998, Nenana Ice Classic: Tanana River ice annual breakup dates. Most of the Arctic rivers are frozen for 7-8 months. Dissimilarity of flow conditions during ice cover period, ice jams and dams allow to state that it is the most important part of the Arctic rivers hydrological regime. The main problem in comparison of ice events and determine its trends are heterogeneously data series. Data are selected to be the most similar. In this study are used homogeneous and comparable series for period 1958-1990. For analysis have chosen 17 rivers situated in different Arctic areas. 3 are in Europe, 10 on Siberia and the others 4 in Canadian Arctic and on Alaska. For all of them was calculated average time of ice cover duration, dates of freezing and breakup and trends of this parameters. Difference between ice cover duration on the Arctic rivers is 64 days. The longest time of ice cover duration is on Anabar – 248 days. The shortest, 184 days, on Yukon in Dawson. Average time of ice cover duration on most part of the rivers is more than 200 days. The earliest date of freeze-up is on Anabar river, average 2 October. To the end of the month ice cover is on most of the rivers. At the beginning of November come out on MacKenzie, Yukon and Pechenga rivers. Breakup starts 5 May (Tanana river). To the end of May ice cover vanish on most of the rivers. Exceptions are rivers in Eastern Siberia and Coppermine river, where spring ice drift starts latest, average 18 June. Differences between freeze-up dates amount 40 days, while between breakup on various rivers 44 days. Ice cover duration trends are diverse but generally on most of the rivers trends are negative (for 11 of 16 rivers). The biggest trend was on Yukon river in Dawson in 1970-90 (–24.2 days/100 years). A little bit smaller trend (–23.7 days/100 years) was on Ob (1958-90) and Anabar (–21.8 days/100 years). Positive values characterized rivers: MacKenzie, Pechenga, Pechora and Taz, which had a biggest value (33.2 days/100 years). Freeze-up on the Arctic rivers occurs later and later. It is described by positive value of this parameter. It fluctuates within 0.9 days/100 years on Anabar to 18.9 days/100 years on Coppermine. However in two stations in the Canadian Arctic, 3 in European Arctic and on Lena ice cover freeze-up more and more early. Only two rivers: Yndigirka and Pechora freeze-up later and later (it is 2.7 days/100 years on Yndigirka and 15.7 days/100 years on Pechora). On the others rivers trends are negatives and fluctuates within 0.2 days/100 years (Coppermine) to 47 days/ 100 years (MacKenzie in Fort Good Hope). Presented trend’s values are different from this presented by Magnuson et al. (2000), who compared freezing dates for lakes and rivers together for all the northern hemisphere.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.