Istnieje wiele problemów związanych z eksploatacją kół zębatych stożkowych o zębach łukowych. Przykładowo trudne warunki smarowania prowadzą do nadmiernego wzrostu temperatury, a to z kolei wywołuje ryzyko poważnego zużycia. W związku z tym celem tej pracy było sprawdzenie, czy poprzez osadzenie cienkiej powłoki niskotarciowej na zębach koła stożkowego jest możliwe zwiększenie odporności na zużycie, redukcja tarcia i zmniejszenie drgań przekładni. Badania tribologiczne przeprowadzono w dwóch etapach. W fazie pierwszej, laboratoryjnej, użyto urządzenia T-30 do badania kół zębatych stożkowych, opracowanego i wytworzonego w ITeE – PIB w Radomiu. Faza druga to były badania weryfikacyjne z użyciem przenośnika zgrzebłowego stosowanego w górnictwie węgla kamiennego, pracującego w warunkach podobnych do występujących w kopalniach. Zbadano wpływ powłoki niskotarciowej o handlowym symbolu WC/C, osadzonej na zębach koła talerzowego. Dla odniesienia zbadano także przekładnie stożkowe bez powłoki. W badaniach laboratoryjnych do smarowania użyto handlowego, samochodowego oleju przekładniowego klasy jakościowej API GL-5 i lepkościowej 80W-90. W badaniach weryfikacyjnych (półprzemysłowych) do smarowania użyto oleju bazowego mineralnego klasy lepkościowej VG32. Badania tribologiczne wykazały, że poprzez naniesienie powłoki niskotarciowej WC/C na zęby koła talerzowego można uzyskać następujące pozytywne efekty w porównaniu z kołami stożkowymi bez powłoki: zwiększenie odporności na dwie groźne formy zużycia (zacieranie i pitting) oraz spadek temperatury oleju smarującego na skutek mniejszego tarcia – w pierwszej fazie testów. Towarzyszyły temu nieco większe drgania przekładni z powłoką, które jednak zmniejszały się w czasie testu i pod jego koniec były podobne do drgań przekładni bez powłoki. Stwierdzono zatem, że powłoka WC/C pozwala na zwiększenie odporności kół stożkowych o zębach łukowych na zużycie i redukcję temperatury oleju smarującego w przekładniach np. przenośników zgrzebłowych użytkowanych w kopalniach węgla kamiennego.
EN
There are many problems in the operation of spiral bevel gears; for example, difficult lubrication conditions lead to excessively high oil temperature and the risk of severe wear. Thus, the aim of this work was to check whether, by the deposition of a thin, hard, low-friction coating on the teeth flanks of spiral bevel gears, it is possible to improve the resistance to wear, reduce friction, and possibly the gear vibrations. The tribological experiments were carried out in two phases. In the first phase, a bevel gear test rig was used (laboratory testing). In the second phase, a verification test was performed using an industrial gear stand (chain conveyor) working under conditions typical of coal mines. The low-friction WC/C coating was tested. The coating was deposited on the teeth of the wheels. For reference, the uncoated pairs of spiral bevel gears were tested. In the laboratory testing, a commercial, mineral automotive gear oil of the API GL-5 performance level and 80W-90 viscosity grade was used for lubrication. For lubrication of the industrial gears, a mineral base oil of the low, VG32 viscosity grade was chosen. The results obtained show that, by the deposition of the low-friction WC/C coating on the teeth of the wheel, the following beneficial effects can be achieved in comparison with the case of the uncoated gears: a rise in the resistance to the two forms of severe wear (scuffing and pitting), and a drop in the oil temperature (lower friction) at first tests stages. The above effects are accompanied at the first stages of the tests by an undesired, higher level of vibrations in case of the steel–WC/C material combination. However, throughout the test, the vibrations for the two material combinations became similar. Thus, the WC/C coating can be applied to increase the wear resistance and decrease the oil temperature in transmissions containing spiral bevel gears in, e.g., chain conveyors installed in coal mines.
W artykule przedstawiono założenia metodyczne wyznaczania naprężeń w warstwie wierzchniej elementów poddawanych tribologicznym testom zmęczeniowym. Elementami tymi były próbki o kształcie stożka wykonane ze stali łożyskowej 100Cr6, szybkotnącej SW7M, bez powłoki i z powłoką niskotarciową WC/C oraz stożki ze stali 100Cr6 pokryte powłoką DLC. Zaproponowane podejście obejmuje szereg pomiarów stanu naprężeń wokół śladu współpracy elementów trących. Do wyznaczania rozkładu naprężeń zastosowano dyfrakcyjną metodę sin2ψ, wykorzystywaną dotychczas w nauce i przemyśle przede wszystkim do oceny poprawności procesów technologicznych, zwłaszcza pod kątem uzyskiwanej wytrzymałości obrabianych elementów.
EN
The aim of this article was to present the methodological assumptions of determining residual stresses in the surface layer of components undergoing tribological tests. The presented approach to residual stresses measurements includes a series of measurements conducted through the middle of the specimen friction track. The sin2ψ diffraction method, which is widely used in science and industrial sectors, was applied to determine the distribution of residual stresses. The cone-shaped samples from bearing steel 100Cr6 and high-speed steel SW7M were tested. By means of developed method the authors analysed the influence of WC/C and DLC coating deposition on the residual stresses of steel samples. The aplication of develped method makes it possible to determine the changes of residua stresses in the tribological samples.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.