Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono symulację wpływu obciążenia osłony odzawałowej na podporność sekcji obudowy zmechanizowanej. Wypadkową nacisku zawału na osłonę odzawałową wyznaczono traktując jej obciążenie jako parcie gruntu na ścianę. W porównaniu do stosowanych dotychczas obliczeń obciążenia osłony, w artykule istotne novum stanowi uwzględnienie przy wyznaczaniu tego obciążenia wszystkich sił w układzie sekcja obudowy górotwór. W pracy wyznaczono i przeanalizowano charakterystyki podpornościowe sekcji obudowy zmechanizowanej, w zależności od obciążenia osłony odzawałowej rumowiskiem zawałowym, uwzględniając również brak tego obciążenia. Do symulacji wykorzystano uogólniony model sekcji obudowy zmechanizowanej pracującej w warunkach określonej ściany i metodę wyznaczania podporności sekcji obudowy, w której uwzględnia się wpływ przyrostu siły w stojakach w zależności od przyrostu kąta nachylenia stropnicy.
EN
The article presents the simulation of the impact of load exerted on gob shield on the load bearing capacity of a powered roof support’s section. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. While comparing the calculations of load with the previously applied methods, it is a new approach of, as it gives consideration to all forces in the support’s section – rock mass system. The work includes calculations and analyses of the load bearing capacity characteristics of a section of powered roof support in case of load of a collapsed gob on the gob shield and lack thereof. The simulation utilizes a general model of a powered roof support's section and a method of calculating the load bearing capacity of the support in the conditions of a given wall – giving consideration to the increase of the force in props depending on the increase of the inclination angle of the canopy.
PL
Asymetryczne obciążenie sekcji obudowy zmechanizowanej może spowodować pogorszenie warunków utrzymania stropu wskutek jego zginania wzdłuż ściany oraz powoduje skręcanie stropnicy i osłony odzawałowej oraz zginanie łączników lemniskatowych. W artykule podjęto próbę, mającą na celu ustalenie przyczyn niesymetrycznego obciążenia stojaków sekcji obudowy. Na podstawie wyników badań dołowych przeanalizowano wpływ zróżnicowania podporności wstępnej na podporność stojaków sekcji obudowy oraz podporności sekcji sąsiednich na obciążenie stojaków sekcji obudowy zmechanizowanej.
EN
Asymmetric load on the powered roof support’s may result in the deterioration of the roof bearing capacity conditions. This occurs due to bending along the longwall and causes the torsion of the canopy and the caving shield as well as the bending of the lemniscate connectors. The article is an attempt to determine the causes of the asymmetrical load exerted on the props of the support section. Based on underground tests results, the impact of different initial load bearing capacities on the bearing capacity of props of the support section has been analyzed. The article also provides the analysis of the impact of load bearing capacity of neighbouring sections on the load exerted on the props of the powered roof support.
EN
The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall’s height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam’s reaction may be estimated using the dependence (2). The vertical component of the goafs’ reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs’ reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).
PL
W pracy przedstawiono model interakcji sekcji obudowy zmechanizowanej z górotworem uwzględniający podatność sekcji obudowy, który służy do analizy warunków równowagi stropowej bryły górotworu w warunkach geologiczno-górniczych określonej ściany. W modelu tym stropowa bryła górotworu utrzymywana jest w równowadze poprzez podparcie przez: sekcję obudowy, pokład, zroby i skały zawału uporządkowanego (Rys. 1). W przyjętym modelu obciążenia zewnętrznego sekcji obudowy zmechanizowanej w stosunku do modelu stosowanego w metodzie doboru sekcji obudowy, opartej o teorię dopuszczalnego ugięcia stropu istotne novum stanowi uzależnienie podporności sekcji od przyrostu kąta nachylenia stropowej bryły górotworu i właściwości medium roboczego z uwzględnieniem zapowietrzenia układu hydraulicznego, uwzględnienie obciążenia osłony odzawałowej gruzowiskiem, wprowadzenie w postaci jawnej podparcia stropowej bryły górotworu przez pokład węgla RA oraz uwzględnienie dodatkowego podparcia przez skały tworzące zawał uporządkowany w postaci składowej poziomej reakcji zrobów R01H. Dla ustalenia warunków utrzymania stropu niezbędna jest znajomość charakterystyki wiążącej podporność sekcji obudowy z konwergencją wyrobiska, której miarą może być kąt nachylenia stropowej bryły górotworu. W górnictwie światowym stosuje się krzywe reakcji górotworu GRC (Ground Response Curves), które pozwalają na wyznaczanie wymaganej podporności sekcji obudowy na podstawie relacji obciążenia sekcji i konwergencji wyrobiska zapewniającej równowagę stropowej bryły górotworu (Rys. 4 i 8). Stan równowagi stropowej bryły górotworu w danych warunkach ustala się przy przemieszczeniu stropowej bryły górotworu o kąt α, który wpływa na wartość: podporności sekcji FN, składowej pionowej reakcji zrobów R01V i składowej poziomej reakcji zrobów R01H. W modelu obciążenia sekcji obudowy z uwzględnieniem obciążenia osłony odzawałowej, wykorzystano model sekcji obudowy umożliwiający jednoznaczne wyznaczenie podporności sekcji obudowy z uwzględnieniem danej wysokości użytkowania sekcji i zmiany nachylenia stropnicy wynikającej z przemieszczania stropu wyrobiska ścianowego. Podporność sekcji obudowy FN oraz jej punkt przyłożenia na stropnicy wyznaczono przy zastosowaniu metody przecięć, umożliwiającej uzewnętrznienie sił wewnętrznych. Ciężar stropowej bryły górotworu zależy od warunków geologiczno-górniczych, dla których określa się kształt i wymiary bryły górotworu oddziałującej na sekcję obudowy. Wypadkową nacisku zawału na osłonę odzawałową wyznaczono traktując jej obciążenie jak parcie gruntu na ścianę. Wymagało to określenia objętości rumowiska skalnego, które oddziałuje na sekcję obudowy zmechanizowanej (Rys. 2). Do wyznaczenia podparcia stropowej bryły górotworu przez pokład węgla wykorzystano wiedzę wynikającą z doświadczeń górnictwa australijskiego. Badania eksperymentalne dotyczące właściwości wytrzymałościowych węgla wykazały, że odkształcenie pionowe, przy którym występuje największa reakcja pokładu przy podparciu stropowej bryły górotworu, stanowi 0,5% wysokości ściany. Miarą szerokości kontaktu tej bryły z pokładem jest szerokość dodatkowego odsłonięcia pułapu wyrobiska w wyniku odspajania górnych naroży pokładu da (Rys. 3). Znając powyższe parametry oraz wartość modułu sprężystości węgla można oszacować wartość reakcji pokładu z zależności (2). Składową pionową reakcji zrobów R01V można wyznaczyć na podstawie charakterystyki wytrzymałościowej rumowiska zawałowego, powierzchni styku bryły górotworu z tym rumowiskiem oraz średniego zgniotu rumowiska, występującego na tej powierzchni styku. W pracy Pawlikowskiego (2014) zaproponowano procedurę badawczą obejmującą badania eksploatacyjne i modelowe obciążenia sekcji obudowy mającą na celu wyznaczenie składowej poziomej reakcji zrobów (Rys. 5). Na podstawie cykli pracy sekcji obudowy zmechanizowanej wyznacza się wartość średnią wskaźnika sztywności kontaktu stropowej bryły górotworu ze skałami tworzącymi zawał uporządkowany, przy założeniu liniowej zależności reakcji poziomej od konwergencji wyrobiska. Parametr ten umożliwia wyznaczenie składowej poziomej reakcji zrobów w modelu obciążenia zewnętrznego sekcji obudowy oraz pozwala na wyznaczenie wymaganej podporności sekcji obudowy niezbędnej dla zapewnienia równowagi stropowej bryły górotworu. Zweryfikowany doświadczalnie model obciążenia zewnętrznego sekcji posłużył do przeprowadzenia symulacji interakcji sekcji obudowy KOPEX-095/17-POz z górotworem w ścianie o wysokości 1,6 m. W oparciu o uzyskane dane doświadczalne przeanalizowano zmienność podatności sekcji obudowy. Dla zarejestrowanych przebiegów rzeczywistych wyznaczono kąt nachylenia charakterystyki podpornościowej sekcji (Rys. 6 i 7). Równoczesne przedstawienie prostych obrazujących wymaganą podporność sekcji i charakteryzujących podatność sekcji obudowy pozwala na predykcję podporności sekcji obudowy zmechanizowanej i konwergencji wyrobiska w warunkach danej ściany (Rys. 9).
EN
Experience acquired for a number of years proves that the fluidity of production processes in longwalls depends on proper support of the excavation roof. A properly matched power support unit is not enough to guarantee good support of the excavation roof, particularly in its face part. Irregularities in the maintenance of the longwall roof may be related to some errors in the control of the power support unit, mainly in setting the unit with too low initial pressure. With respect to the above issues, the article features an analysis of the setting load impact on the bearing capacity of props in a power support unit.
PL
Doświadczenia zdobyte na przestrzeni lat dowodzą, że o płynności procesu produkcyjnego w ścianach w znacznej mierze decyduje prawidłowe utrzymanie stropu wyrobiska. Prawidłowo dobrana sekcja obudowy zmechanizowanej nie gwarantuje jeszcze prawidłowego utrzymania stropu wyrobiska, zwłaszcza w jego części przyczołowej. Nieprawidłowości w utrzymaniu stropu wyrobiska ścianowego mogą być związane, między innymi z błędami w sterowaniu sekcjami obudowy zmechanizowanej, które sprowadzają się głównie do rozparcia sekcji ze zbyt niskim ciśnieniem wstępnym. Biorąc pod uwagę powyższe w niniejszym artykule przeprowadzono analizę wpływu podporności wstępnej na podporność stojaków sekcji obudowy zmechanizowanej.
PL
Charakterystyka podpornościowa sekcji obudowy zmechanizowanej zależy od cech geometrycznych sekcji, podporności wstępnej stojaków I podpory stropnicy [2, 3, 5], objętości cieczy w przestrzeniach roboczych siłowników hydraulicznych układu podpornościowego, wynikającej z Ich konstrukcji oraz wysokości użytkowania, a także od stopnia zapowietrzenia medium roboczego [7, 8, 9].
EN
The method of determination of props stiffness in relation to their structure there is presented in the paper. Comparison of stiffness characteristic curves of different prop solutions at the same range of longwall height is shown. These characteristics are basis of calculation of powered roof support units load under certain roof convergence. Analysis of obtained characteristics has proved that the set pressure of powered roof support unit under certain mining conditions should be done on basis of load characteristic curve, depending on props stiffness, structure of support unit and longwall height.
EN
This paper analyses selected aspects of effectiveness and reliability of one of the supply chain links, i.e. an automated high bay racking system (a stacker crane). The primary purpose of the research was to determine and analyse reliability indicators as well as to assess and analyse characteristics of changes of the working process being carried out. The research was performed according to the passive experiment method in natural operating conditions. The stacker crane and the individual operations of the working process were decomposed for the needs of the research. Identification of the object and subject of the research made it possible to identify significant (for the purposes of the paper) operational states of the investigated stacker crane. The working process being carried out was identified, a model of the working process was built and the performed operations were decomposed within the extent of the research. The paper presents selected results of the research performed.
PL
W pracy przedstawiono metodę wyznaczania sprężystości stojaka hydraulicznego dwuteleskopowego. Przeanalizowano wpływ cech konstrukcyjnych stojaka na jego charakterystykę z uwzględnieniem trzech wariantów rozwiązania technicznego. W wyniku symulacji komputerowej kinematycznego wymuszenia ruchu stropnicy wyznaczono charakterystyką podatności sekcji obudowy zmechanizowanej, ze stojakami dwuteleskopowymi. Analizę przeprowadzono dla płaskiego modelu sekcji obudowy zmechanizowanej dla różnych wartości podporności wstępnej.
EN
The method of determination of two-telescopic hydraulic leg elasticity was presented. Impact of leg design features on its characteristics with consideration of three variants of technical solutions was analyzed. Yield characteristics of powered roof support with two-telescopic legs was determined in a result of computer simulation of kinematic force of canopy movement. Analysis was carried out for a flat model of powered roof support for different setting loads.
PL
W pracy przedstawiono metodę wyznaczania nacisku skał tworzących zawał na osłonę odzawałową sekcji obudowy zmechanizowanej, w zależności od kształtu i wymiarów bryły górotworu oddziałującego na obudowę, wynikających z wysokości ściany, jak i z właściwości skał stropu bezpośredniego i stropu zasadniczego. Wartość nacisku skał zawału wyznaczono uwzględniając: podporność sekcji obudowy zmechanizowanej, całkowity ciężar bryły stropowej oraz podporność zrobów. Analizę przeprowadzono dla płaskiego modelu sekcji obudowy zmechanizowanej.
EN
In the paper a method of determining the goaf pressure on a shield of a powered roof support unit, dependent on a shape and dimensions of a roof rock block, conected with longwall height and features of rock mass, has been presented. The value of the goaf pressure is determined with taking into consideration a support bearing force, weight of the roof rock body and goaf reaction. Analysis has been carried on with use of a plane model of a powered roof support unit.
PL
W pracy przedstawiono metodę wyznaczania charakterystyk podporności sekcji obudowy zmechanizowanej, wynikających z kinematycznego wymuszenia ruchu stropnicy, z uwzględnieniem współczynnika ściśliwości cieczy w przestrzeniach roboczych siłowników podpornościowego układu hydraulicznego, zależnego od stopnia zapowietrzenia. Analizę przeprowadzonego dla płaskiego modelu sekcji obudowy zmechanizowanej. Charakterystyki podpornościowe sekcji obudowy zmechanizowanej wyznaczono dla różnych wartości podporności wstępnej, na podstawie przyrostu siły w stojakach i podporze stropnicy wynikającej z ruchu stropnicy.
EN
There is presented a method for determination of load characteristics of powered roof support units forced by canopy movement. Compressibility of the hydraulic medium in actuators and a degree of air content in the hydraulic medium are taking into consideration. The analysis was carried out of for a 2-D model of the powered been determined for deferent values of setting load on the basis of force increment in legs and in a canopy ram, caused by canopy movement.
PL
W pracy przedstawiono uproszczoną metodę wyznaczania przebiegu czasowego obciążenia dynamicznego sekcji obudowy zmechanizowanej z wykorzystaniem zasady kinetostatyki. Analizę przeprowadzono dla płaskiego modelu sekcji obudowy zmechanizowanej przy założeniu idealnej sztywności elementów sekcji. Dla przyjętych przebiegów czasowych wybranych sił wewnętrznych w sekcji i związanej z nimi zmiany długości stojaków i podpory stropnicy, występujących w trakcie obciążenia dynamicznego, wyznaczano składowe wektora obciążenia działającego na zespół stropnica-osłona.
EN
A simplified method for determining of time related course of the dynamic load of a powered roof support unit, when employing principles of the dynamic force analysis, bas been presented in the paper. The analysis was carried out for a planar model of a powered roof support unit on the assumption that the rigidity of elements of the support unit is ideal. Components of a vector of the load acting on the assembly: canopy - shield were determined for the assumed time - related courses of the selected internal forces occurring in a support unit and for the associated changes in the length of legs and of the canopy capsule taking place during action of the dynamic load.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.