Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Recently, titanium (Ti) and its alloys have been widely used in dental and surgical implants in the last few decades. However, there is a loosening effect over a long period usage. Therefore, the present study aimed to increase life of an implant by its surface modification. Methods: In present study, sol-gel process has been applied to create tantalum pentoxide (Ta2O5) layer coating on Ti-substrate. In this technique, polyethylene glycol (PEG) plays an important role to form uniform porous coating, which can have potential application in formation of strong bonding to the natural bone. Results: Microstructural, elemental, structural and binding energy results showed that the material with 100% PEG-enhanced sol-gel Ta2O5 with spin coating onto Ti substrate followed by an optimized sintering temperature (500 °C) has better porous structure than that of 5% PEG-enhanced sol-gel Ta2O5 coating, and would be suitable for tissue in-growth properties. Conclusions: Therefore, it was concluded that the present spin coated 100% PEG-enhanced Ta2O5 coating onto Ti, having the most suitable morphology with enhanced roughness, could be noteworthy for potential tissue in-growth and it could provide desired bonding at the interface of Ti-implant coating and host tissues in biomedical applications.
EN
Different stabilization devices have been used for treating lumbar spine disorders, including fusion, dynamic stabilization devices, flexible rods etc., which possess a different level of limitations. A simple experimental procedure is developed using a prototype lumbar spine specimen (L1-S), to evaluate the biomechanical performance of the lumbar spine. The range of motions (ROM) are tested for pedicle screw made of stainless steel (SS) fixation, using Teflon rod, ultra high molecular weight poly ethylene (UHMWPE) rod, poly ether ether ketone (PEEK) rod and SS flexible rod device (FRD). SS pedicle screw is used for fixation on the prototype lumbar spine. Experimental results are validated and compared with finite element (FE) results. It is observed that, in both flexion and extension, reduction in ROM is higher for Teflon and UHMWPE as compared to PEEK and FRD system. Differences between experimental and numerical results are found to be within an acceptable limit of 5–11%. For flexibility study, both numerical and experimental results support that PEEK rod plays an effective and important role among all the semi-rigid rods. The FRD devices are found to preserve the flexibility of the segment considerably better than PEEK rod.
3
EN
Loosening and breakage of lumbar pedicle screw are the most common complications affecting the spinal stability. The design factors of the pedicle screw that may affect the fixation strength under bending load are pitch length, major diameter, thread profiles and geometry. In this study, 84 finite element (FE) models of the pedicle screw were generated having 7 pitch lengths, 3 major diameters, 2 thread profiles and 2 geometries. The assembly of pedicle screw and CT scan based half section FE model of 4th lumbar vertebra was loaded with a 200 N force on the screw head which is equivalent to a bending moment of 11 Nm. With triangular thread profile and cylindrical geometry, for 300% increase in pitch length (1–4 mm), von Mises stress in screw and von Mises strain in bone increased by 65% and 117% respectively, for a 26% decrease in major diameter (7.6 mm to 5.6 mm) and correlations were proposed among screw stress (r2 = 0.992) or bone strain (r2 = 0.986), pitch length and major diameter. Similar correlations were also proposed for trapezoidal thread profile and tapered geometry (r2 = 0.994 for screw stress and r2 = 0.986 for bone strain). Hence, a combination of tapered pedicle screw with lower pitch length, higher diameter and trapezoidal thread profile may serve better under bending load for lumbar vertebral implant.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.