Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Let U = {z is an element of C : \z\ < 1} denote the unit disc and let H = H(U) denote the family of functions holomorphic in U. Let omega denote the class of Schwarz functions w is an element of H such that [...]. We say that / is subordinate to g in U and write [...].
EN
Let H = H(U) be the class of all functions which are holomorphic in the unit disc U = {z : \z[ < 1}. Let P(n,A,B) denotes the class of all functions p(z) = 1 +p1z +p2z2 + ...is an element of H, such that p(z) -< 1+Azn/1-Bzn, where -< denotes subordination. With the class P(n, A, B) we connect the subclass S*(n, A, B) of starlike functions in the following way. A function f(z) = z o+a2z.2 z2 + ... belongs to S*(n, A, B) if and only ifzf'(z)/f(z) is an element of P(n, A, B). In this note we give some estimations for the modulus of functions and coefficients in the classes P(n,A,B) and S*(n,A, B).
EN
Let H = H(U) be the class of all functions which are holomorphic in the unit disc U = {z : \z\ < 1}. Let P(n) denotes the class of all functions p(z) = 1+piz+... is an element H, such thatp(pz) -< (1+zn/(1-zn), where -< denotes subordination. With the class P(n) we connect the subclass S*(n) of starlike functions in the following way. A function f(z) = z + a2z + ... belongs to S* (n) if and only if zf'(z)/f(z) is an element of P(n). In this note we give the estimations of some coefficients in the classes P(n) and S*(n) and we find the radius of convexity of the class S*(n).
EN
In this paper for fixed natural number n we define subclass S*/n,(alpha) of strongly starlike functions [...].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.