Motion planning for autonomous vehicles relies heavily on perception and prediction results to find a safe, collision-free local trajectory that adheres to traffic rules. However, vehicle perception is frequently limited by occlusion, and the generation of safe local trajectories with restricted perception poses a significant challenge in the field of motion planning. This paper introduces a collision avoidance trajectory planning algorithm that considers potential collision risks, within a hierarchical framework of sampling and optimization. The primary objective of this work is to generate trajectories that are safer and align better with human driver behavior while considering potential collision risks in occluded regions. Specifically, in occlusion scenarios, the state space is discretized, and a dynamic programming algorithm is used for a sampling-based search to obtain initial trajectories. Additionally, the concept of a driving risk field is introduced to describe potential collision risk elements within the human-vehicle-road environment. By drawing inspiration from graph search algorithms, potential collision risk areas are accurately described, and a cost function is proposed for evaluating potential risks in occluded regions. Drivers typically exhibit conservative and cautious driving behavior when navigating through occluded regions. The proposed algorithm not only prioritizes driving safety but also considers driving efficiency, thereby reducing the vehicle’s conservativeness when passing through occlusions. The research results demonstrate that the ego vehicle can actively avoid blind spots and tends to move away from occluded regions, aligning more closely with human driver behavior.
This paper proposes an autonomous obstacle avoidance method combining improved A-star (A*) and improved artificial potential field (APF) to solve the planning and tracking problems of autonomous vehicles in a road environment. The A*APF algorithm to perform path planning tasks, and based on the longitudinal braking distance model, a dynamically changing obstacle influence range is designed. When there is no obstacle affecting the controlled vehicle, the improved A* algorithm with angle constraint combined with steering cost can quickly generate the optimal route and reduce turning points. If the controlled vehicle enters the influence domain of obstacle, the improved artificial potential field algorithm will generate lane changing paths and optimize the local optimal locations based on simulated annealing. Pondering the influence of surrounding participants, the four-mode obstacle avoidance process is established, and the corresponding safe distance condition is analyzed. A particular index is introduced to comprehensively evaluate speed, risk warning, and safe distance factors, so the proposed method is designed based on the fuzzy control theory. In the tracking task, a model predictive controller in the light of the kinematics model is devised to make the longitudinal and lateral process of lane changing meet comfort requirements, generating a feasible autonomous lane-change path. Finally, the simulation was performed in the Matlab/Simulink and Carsim combined environment. The proposed fusion path generation algorithm can overcome the shortcomings of the traditional single method and better adapt to the dynamic environment. The feasibility of the obstacle avoidance algorithm is verified in the three-lane simulation scenario to meet safety and comfort requirements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.