Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In light of recent events in the replacement and generation of human tissues, it is becoming extremely difficult to ignore the existence of bioceramics. Although hydroxyapatite and betatricalcium phosphate materials are frequently employed individually, they both lack certain qualities. As a result, combining hydroxyapatite and beta-tricalcium phosphate may result in the combination of their respective qualities. The current study aims to investigate the effect of using a novel nanostructure called silicene (silicon nanosheet-SiNS) on the mechanical properties of the composite ceramic (biphasic calcium p hosphate) at various ratios of hydroxyapatite and beta-tricalcium phosphate. The silicene has been synthesized and added at different weight percentages of 1, 3, and 5%. The results reveal that the compressive strength improved due to increasing the content of silicene. The average of increasing was between 58.6% and 142% because of the strong hexagonal structure of silicene. At the same time, the hardness of the biphasic calcium phosphate composite was enhanced by increasing the weight percentage of silicene. However, the hardness decreased when the content of silicene was more than 3% due to the presence of small cavities on the surface of the samples.
EN
This research investigates the effect of using hard ceramic SiC particles on the mechanical and tribological properties of Al6082 alloy. This investigation is performed by mixing various contents of SiC as weight percentages of 0, 1, 2, 3, and 4% with Al6082. Mechanical tests, such as tensile strength and hardness tests, are adopted for this composite (Al6082/SiC) at various contents of the filler (SiC). Besides, the wear test is conducted for the Al6082/SiC composite at various normal loads (10, 15, 20, 25, and 30 N) and sliding distances (200, 400, 600, 800, and 1000 m). Taguchi’s approach is used to create the experimental runs’ matrix. The findings reveal that the mechanical properties improved with increasing the percentage of SiC reinforcement. The tensile strength and Rockwell hardness of Al6082 increased by about 24.6 and 14%, respectively, using 4% of SiC particles. Regarding the tribological behavior, the average wear of Al6082 alloy decreased with increasing the percentage of SiC reinforcement due to higher hardness of reinforcement in Al6082/SiC composite. At the same time, an increase in the normal load and sliding distance led to a decrease in wear due to increasing plastic deformation at elevated loadings and larger area contacts.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.