Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Design and Performance Evaluation of Protective Clothing for Emergency Rescue
EN
Protective clothing is very important to guarantee the safety of emergency rescuers. And proper construction design of clothing will improve the rescue efficacy. This study developed a new set of emergency rescue protective clothing (NC) and evaluated its performance. Clothing fit test, freedom of movement, and rationality of pocket tests were conducted. The results showed that the amount of slippage at the hem, waist of pants, and leg opening of NC has been greatly reduced. The NC had provided better cloth fit and dynamic comfort. The storage capacity of the pockets had been increased, the position and angle design of the pocket made it easier to take and keep the rescue tools.
2
Content available remote Solidification microstructure in a supercooled binary alloy
EN
The maximum undercooling that has been achieved for Ni-Cu alloy, by using molten glass purification and cyclic super-heating technology, is 270 K. With the help of high-speed photography, the solidification front images of Ni-Cu alloy at various typical undercooling were obtained. Two grain refinements occurred in the range of 60 K< ΔT < 100 K and ΔT > 170 K, the solidification front became smoother, and the solidification position appeared randomly. With the increase of undercooling, the transition from solute diffusion to thermal diffusion leads to the transition from coarse dendrite to directional fine dendrite. At large undercooling, considerable stress is accumulated and some dislocations exist in the microstructure. However, the proportion of high-angle grain boundaries is as high as 89%, with twin boundaries of 13.6% and most strain-free structures, and the microhardness decreases sharply. This indicates that the accumulated stress at large undercooling causes the plastic strains in the microstructure, and in the later stage of recalescence, part of the plastic strains is dissipated by the system and acts as the driving force to promote the recrystallization of the microstructure.
3
Content available remote Microstructure refinement mechanism of undercooled Cu55Ni45 alloys
EN
Different undercooling degrees of Cu55Ni45 alloy were obtained by the combination of molten glass purification and cyclic superheating, and the maximum undercooling degree reached 284 K. The microstructure of the alloy was observed by metallographic microscope, and the evolution of microstructure was studied systematically. There are two occasions of grain refinement in the solidification structure of the alloy: one occurs in the case of low undercooling, and the other occurs in the case of high undercooling. Electron backscatter diffraction (EBSD) technology was used to analyze the rapid solidification structure under high undercooling. The features of flat polygonal grain boundary, high proportion of twin boundary, and large proportion of large angle grain boundary indicate recrystallization. The change in microhardness of the alloy under different undercooling degrees was studied by microhardness tester. It was found that the average microhardness decreased sharply at high undercooling degrees, which further confirmed the recrystallization of the solidified structure at high undercooling degrees.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.