Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Applying Knowledge Distillation to Improve Weed Mapping With Drones
EN
Non-invasive remote sensing using UAVs can be used in precision agriculture to observe crops in visible and non-visible spectra. This paper investigates the effectiveness of state-of-the-art knowledge distillation techniques for mapping weeds with drones, an essential component of precision agriculture that employs remote sensing to monitor crops and weeds. The study introduces a lightweight Vision Transformer-based model that achieves optimal weed mapping capabilities while maintaining minimal computation time. The research shows that the student model effectively learns from the teacher model using the WeedMap dataset, achieving accurate results suitable for mobile platforms such as drones, with only 0.5 GMacs compared to 42.5 GMacs of the teacher model. The trained models obtained an F1 score of 0.863 and 0.631 on two data subsets, with a performance improvement of 2 and 7 points, respectively, over the undistilled model. The study results suggest that developing efficient computer vision algorithms on drones can significantly improve agricultural management practices, leading to greater profitability and environmental sustainability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.