Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The primary objective of this research can be divided into two separate aspects. The first one was to verify whether own software can be treated as a viable source of data for the Computer Aided Design (CAD) modelling and Computational Fluid Dynamics CFD analysis. The second aspect was to analyze the influence of the Ventricle Assist Device (VAD) outflow cannula positioning on the blood flow distribution in the brain-supplying arteries. Patient-specific model was reconstructed basing on the DICOM image sets obtained with the angiographic Computed Tomography. The reconstruction process was performed in the custom-created software, whereas the outflow cannulas were added in the SolidWorks software. Volumetric meshes were generated in the Ansys Mesher module. The transient boundary conditions enabled simulating several full cardiac cycles. Performed investigations focused mainly on volume flow rate, shear stress and velocity distribution. It was proven that custom-created software enhances the processes of the anatomical objects reconstruction. Developed geometrical files are compatible with CAD and CFD software - they can be easily manipulated and modified. Concerning the numerical simulations, several cases with varied positioning of the VAD outflow cannula were analyzed. Obtained results revealed that the location of the VAD outflow cannula has a slight impact on the blood flow distribution among the brain supplying arteries.
EN
In medical terms, fenestration stands for an anomaly within the circulatory system in which the blood vessel lumen is divided into two separate channels that rejoin in the distal part of this vessel. The primary objective of this research was to analyze the impact of the left vertebral artery (LVA) and basilar artery (BA) fenestrations on the blood flow characteristics in their regions and downstream, in the cerebral circulation. The geometrical data, obtained from the angio-Computed Tomography, were the basis for the generation of a 3D model in SolidWorks 2015. In order to observe the flow characteristics within the whole spatial domain, computational fluid dynamics was involved in performing simulations of the blood flow in the patient-specific arterial system (beginning with the aortic arch and finishing with the Circle of Willis). To examine the flow distribution changes resulting from altered fenestration geometries, additional models were built. The blood flow velocity, volume flow rate and shear stress distribution were analyzed within this study. It was proven that the length/size/ position of the fenestration altered the flow characteristics in different manners. The investigations showed that the patient-specific LVA, at the V3 section (extracranial part of the artery located between the spine and the skull), is not a reason of aneurysm formation. However, BA fenestration at the proximal segment might be a possible reason of future aneurysm formation. It was proven that the computational fluid dynamics tool could support medical diagnostic procedures and multivessel brain vascular disease treatment planning.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.