The aim of the article is to present and validate a methodology for collecting road load data on a vehicle, driving on roads and analysis of a drive data signal under the wheel in the time domain, using FRF (Frequency Response Function) and the MTS 320 eight-poster inertia reacted road simulator. The elaborated drive data, was used to control the actuators forcing the movements of the wheels and the coupling part of the semi-trailer during durability tests. The road tests were carried out by registering physical variables in the time domain, by a set of sensors mounted on a vehicle. The data was collected from roads categorized as motorways, national and local roads. Differences between the variability of the parameters, collected on the roads and the variability of the drive data under the wheel, were determined for the particular types of roads, for loaded and unloaded vehicle. The obtained accuracy of reconstruction of the road load data conditions was as high as 97%. Therefore, the proposed method is suitable for reliable durability tests with use of the road simulator.
This paper presents the results of tests carried out on the glass robot’s lance equipped with a prototype friction damper. Two ways of mounting the damper (the original design and the modified design) are described. A series of experimental tests were carried out for each of the ways of mounting to determine the lance operating conditions at which the damper worked most efficiently. Resonance curves were determined for each of the designs and it was found that the modified structure reduced vibrations to a greater degree, which clearly indicates that the modified solution ensures a higher vibration damping efficiency.
The article describes a test stand with a spindle equipped with an active bearing preload system using piezoelectric actuators. The proper functioning of the spindle and the active system was associated with the correct alignment of the spindle shaft and the drive motor. The article presents two methods of shaft alignment. The use of commonly known shaft alignment methods with dial indicators is insufficient from the viewpoint of being able to control this preload. This work aims at making the readers aware that, for systems with active bearing preload, the latest measuring devices should be used to align the shaft. The use of commonly known methods of equalization with dial gauges is insufficient from the point of view of controlling this preload. Increasing the accuracy of shaft alignment from 0.1 to 0.01 mm made it possible to obtain a 50% reduction in the displacement of the outer bearing ring during spindle operation.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A test bench for pneumatic actuators for controlling the clutch in trucks with automatic gearbox is presented. The mechanical part of the station is shown. The individual steps of the testing process of this actuator as well as exemplary test results carried out at the described station were discussed.
PL
Przedstawiono stanowisko do testowania siłowników pneumatycznych służących do sterowania sprzęgłem w pojazdach ciężarowych z automatyczną skrzynią biegów. Pokazano część mechaniczną stanowiska. Omówiono poszczególne kroki procesu testowania siłownika oraz przykładowe wyniki testów przeprowadzonych na opisanym stanowisku.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A test stand with a high speed spindle equipped with an active support, which provides the possibility of changing the preload of the bearings, was presented. The LabVIEW software environment was used for control. The benefits resulting from the use of the active system to reduce the amplitude of the vibration displacement of the spindle tip are presented.
PL
Przedstawiono stanowisko badawcze z wrzecionem szybkoobrotowym wyposażonym w podporę aktywną, która umożliwia zmianę napięcia wstępnego łożysk. Do sterowania wykorzystano środowisko programowe LabVIEW. Pokazano korzyści wynikające z zastosowania układu aktywnego do redukcji amplitudy przemieszczenia drgań końcówki wrzeciona.
The article presents FEM model of an angular contact ball bearing used in spindle systems with active preload control. A two-dimensional replacement model for a single rolling element was developed. Its elastic characteristics were determined and the stress distribution was presented for the FEM 2D model. Based on the elastic characteristics for a single rolling element, a complete 3D bearing was modelled. The substitute model of a bearing developed in this way was used to model the spindle system. The elasticity curve of this spindle was determined. The last stage of the work involved the experimental verification of the FEM model using a custom-built test bench, in which piezoelectric elements were used to preload the bearings.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.