Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Hydroponics, also known as controlled environment agriculture, is a method of cultivating plants and herbs without soil using mineral-supplemented solutions. Agriculture biotechnology enhances its wings on developing genetically modified plants for expanding crop yield and introducing characteristic features such as growing seasonal crops throughout the year, weather-resistant, and pest resistance. Compared to traditional agriculture, hydroponic cultivation yields high-quality crops with 90% more efficient use of water. Therefore, hydroponic cultivation could be considered a succeeding future of agriculture. In this context, understanding agriculture through the hydroponic route is vital for the efficient cultivation of crops. This review elaborates on the different classes of hydroponic systems and the factors that enable the systematic elements of the frame-up. Design/methodology/approach: The significant intent of this review is to provide information on distinct hydroponic systems. Findings: The present review reports a comprehensive discussion about the significance of the hydroponics system, its mechanism, nutrient solution preparation, types of hydroponic setup, and the challenges faced and would light up the knowledge in the same. Originality/value: This review focus on the current feasible hydroponic method of crop cultivation.
EN
The present investigation aimed to determine the optimal parameters for wire-cut electrical discharge machining (WEDM) for stir cast aluminum alloy AA6063 at 850°C reinforced with 10 wt.% green SiC (SiCg) and black SiC (SiCb) particles. The WEDM machining parameters, such as pulse on time (TON), wire feed (WF) rate, and flushing pressure (FP) of the resultant stir cast AA6063/SiCb and AA6063/SiCg composites, were optimized using the Taguchi method with L9 orthogonal array to estimate the responses, such as surface roughness and metal removal rate. Further, through grey relational analysis, the finest parameters for WEDM of AA6063/SiCb and AA6063/SiCg composites were evaluated as TON = 50 μs, WF rate = 18 m/min, and FP = 3 MPa. With the optimum parameters obtained, conformational experiments were conducted, and the scanning electron microscopic images were recorded, along with the energy-dispersive X-ray (EDX) spectroscopic data of the worn surfaces and debris. From the EDX mapping images of the machined surface, it was evident that AA6063/SiCb displays a more polished surface than AA6063/SiCg. However, for applications requiring a high metal removal rate, AA6063/SiCg displays better results than AA6063/SiCb.
EN
Purpose: Recently, there has been an upsurge among people around the world in maintaining a sustainable and hygienic environment. This is due to the over-exploitation of recourses causing environmental pollution and spreading bacterial infections. In this regard, scientists are motivated to develop smart coatings where environmental pollutants and bacterial cells are degraded when in contact with their surfaces. Design/methodology/approach: In our previous report, ZnO nanoparticles (NPs) were prepared using the precipitation technique, showing good photocatalytic and antibacterial activity [1]. In this context, the present study details the use of ZnO NPs as pigment for the fabrication of alkyd resin-based self-cleaning coating. The coating was developed by mixing ZnO NPs and alkyd resin along with the additives using the ball milling technique. The developed coating was characterized using field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, and water contact angle measurements. Findings: To elucidate the self-cleaning and hygienic behaviour of the ZnO/alkyd resin coating, the dried coating was exposed to crystal violet (CV) solution as a model dye pollutant and bacterial strains to assess its photocatalytic and antibacterial activity. The droplets of CV solution placed over the coating almost degraded after 360 min of exposure to sunlight owing to the presence of ZnO NPs in the coating. Further, the coating exhibits reasonable antibacterial activity against E. coli and P. aeruginosa whereas it displays low antibacterial activity against S. aureus. Research limitations/implications: Even though, the self-cleaning coating shows promising results, tuning the activity of the photo-catalytic pigment can improve the pollutant degradation efficiency and elevate bactericidal activity. Originality/value: ZnO NPs-impregnated alkyd resin coating for self-cleaning applications is novel.
EN
This paper aims to investigate the corrosion behavior of zirconium carbide (ZrC) reinforced Al – Si metal matrix composites (MMCs) in a mixture of acidic solution using weight loss method. The composites are prepared by powder metallurgy method. Al-12Si-xZrC composites containing 0, 5, and 10 weight percentage of ZrC particles are compacted in a die set assembly and sintered in an inert gas muffle furnace. The acidic solutions used for corrosion are 1 N HCl, 1 N H2SO4 and 1 N HNO3. The corrosion characteristics of Al-12Si-xZrC composites and the pure Al were experimentally evaluated. The corrosion test was carried out at different weight proportions of the samples in various concentrations of the acid such as 1 N HCl, 1 N H2SO4 and 1 N HNO3 for different exposure time (i.e., 24 h, 72 h, 144 h and 216 h), respectively. The results specified that corrosion rate of composites was lower than that of base metal Al under the corrosive atmosphere, regardless of exposure time and acidic solutions used as corrodents. Al-12Si-xZrC composites become more corrosion resistant as the ZrC content is increased. This is because of the development of stable oxide layer above the specimens. Scanning electron microscopy (SEM) confirms the degree of attack of acidic solution on the surface of the examined material.
5
Content available remote Effect of graphene as anti-settling agent for magnetorheological fluid
EN
Purpose: Magnetorheological fluids are field-responsive fluids containing magnetic particles suspended in a suitable medium. In this proposed work, the iron powder was dispersed in silicone oil to obtain magnetorheological fluid. These fluids can be transformed from liquid-like state to solid-like state within milliseconds by applying magnetic field and vice versa. The particles arrange as chain like pattern with the application of magnetic field, increasing the yield strength of the fluid. However, when the shear stress reaches the critical value, the chain like pattern breaks causing reduction in yield strength. One of the major limitations of these fluids is that the suspended particles settle down quickly forming cake like structure at the bottom, which is very difficult to re-disperse. Design/methodology/approach: The present study focuses on increasing the Sedimentation time of the fluid by adding suitable Nano additives. For this purpose graphene nanoparticles with atomic thickness were introduced as an additive to decrease the sedimentation of the fluid. The added graphene sheets (gap-fillers) filled the interspaces of Iron particles and improved the sedimentation resistance. Different quantities of graphene were added (0.5 g, 1.5 g, 2.5 g and 3.5 g) and their normalized height was calculated with time. Interpolation method was also done to find the sedimentation values with Graphene addition which were not done experimentally. Findings: The prepared samples were characterized using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Optical Microscopy, Viscometer etc. Contour plot was interpreted to understand the effect of graphene addition towards the normalized height and viscosity of the fluid.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.