Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The limit directions of a real analytic vector field
EN
To every real analytic manifold M there is associate the so-called projective analytic tangent bundle, q : P(TM) -> M, whose fibers [q^-1](x) are the real projective spaces, P(T[sub x]M), of the tangent vector space T[sub x]M of M at x. Let v be a real analytic vector field on M. Let v be the section of q on the open set U =[...], defined by v(x) = Rv(x), for all x [belongs to] U. The closure of Im v in P(TM) is called the set of limit directions of the vector field v. Rene Thom has conjectured that for each a [belongs to] M the set [q^-1] (a) [...] is semi-algebraic in P(T[sub a]M). In [3] Łojasiewicz proved that [...] is locally descibed by H[sub M]t[sub l],...,t[sub m] where H[sub M] is the sheaf of the real analytic functions on M. In (2), for any given open subset Omega of [R^n] we have associated an analytic subalgebra 0(Omega)[is a subset of] H(Omega) satisfying some conditions, and we have proved that the closure of any subset A [is a subset of] Omega which is described by global equations in 0(Omega) is a subset of the same type. In this paper we prove that if v : M -> TM is a vector field in some well defined subalgebra of the algebra of analytic functions on M, then the set of limit directions of v is also described by this algebra.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.