Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Seismic data collected from desert areas contain a large amount of low-frequency random noise with similar waveforms to the effective signals. The complex noise characteristics make it difficult to effectively identify and recover seismic signals, which will adversely affect subsequent seismic data processing and imaging. In order to recover the complex seismic events from low-frequency random noise, we propose an attention mechanism guided deep convolutional autoencoder network (ADCAE) to assign different importance to different features at different spatial position. In ADCAE, an attention module (AM) is connected to the deep convolutional autoencoder network (DCAE) with soft-thresholded symmetric skip connection that helps to enhance the ability of feature extraction. By combining the global features of the input data and the output local features of DCAE, AM generates an attention weight matrix, which assigns different weights to the features associated with the seismic events and random noise during the training process. In this way, AM can guide the update of the target gradient, thus retains the complex structure of the seismic events in the denoised results and improves the training efficiency of the model. The ADCAE is applied to the synthetic data and field seismic data, and denoised results show that ADCAE has achieved satisfactory denoising performance in signals recovery and low-frequency random noise suppression at the low signal-to-noise ratio.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.