Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A method based on energy is a very useful tool for description of mechanical properties of materials. In the current paper, on the base of geometrical interpretation of a deformation process, the strain energy density function for isotropic nonlinear materials has been constructed. On account of hydrostatic interpretation of the volumetric deformation, the elastic part of energy has been extracted. The initiation of the damage process due to plastic flow of the material under plane stress has been determined and the stability conditions have been formulated by using in the stability analysis the strain energy density function in addition to Sylvester’s theorem and assumption of zero volume change during pure plastic deformations. This concept is an original part of the work and continuation of the investigations previously carried out by Wegner and Kurpisz. The theoretical investigations have been illustrated on the example of aluminium.
EN
In this paper, constitutive relations for metal foam under complex load are introduced using a phenomenological concept. On the basis of stress-strain and transversal-longitudinal strain dependencies in uniaxial tests, a form of the function for strain energy density is specified, and further, the criterion for loss of stability due to the occurrence of plastic flow is defined. The theoretical investigations are illustrated by a short numerical example.
PL
W niniejszej pracy, bazując na fenomenologicznym sposobie podejścia, wyprowadzono związki konstytutywne piany metalowej poddanej złożonemu stanowi obciążenia. Na podstawie zależności naprężenia oraz odkształcenia poprzecznego od odkształcenia podłużnego uzyskanych w jednoosiowych próbach, wyznaczono wzór opisujący funkcję gęstości energii wewnętrznej, a następnie sformułowano analityczną postać kryteriów zniszczenia materiału ze względu na wystąpienie plastycznego płynięcia. Rozważania teoretyczne zilustrowano prostym przykładem numerycznym.
PL
Rozwój technologii informatycznych pozwolił na wprowadzenie do obliczeń inżynierskich na masową skalę programów wykorzystujących metodę elementów skończonych MES do symulowania zachowania się elementów maszyn, urządzeń mechanicznych oraz zjawisk fizycznych. Głównym problemem ich zastosowania w przypadku analizy tarcia powierzchniowego jest to, że w większości są przeznaczone tylko do obliczeń materiałów o właściwościach liniowych. To zjawisko ma szczególne znaczenie przy obliczeniach materiałów hiperelastycznych, do których należy również guma. Jest ona dzisiaj masowo wykorzystywana w różnych dziedzinach techniki. Zjawisko tarcia ma bezpośredni wpływ na odkształcanie się przedmiotów wykonanych z materiałów hiperelastycznych. Do obliczeń tych materiałów zastosowano metodę energetyczną, wykorzystującą element skończony o nieliniowych właściwościach modelowany energetycznie oraz oryginalny algorytm iteracyjny nazwany metodą relaksacji lokalnej. W artykule przedstawiono zastosowanie metody energetycznej do wyznaczenia odkształceń pierścienia gumowego z uwzględnieniem zjawiska tarcia powierzchniowego. Oprócz otrzymanych deformacji danego elementu przedstawiono również wyniki obliczeń dyssypacji energii spowodowanej pracą sił tarcia oraz rozkłady energii odkształcenia postaciowego i objętościowego w poszczególnych warstwach odkształcanego pierścienia.
EN
The information technology development improved engineering calculations by global spread of finite element method FEM to simulate behaviour of machine elements, mechanical devices and physical phenomena. The main problem of using it in case of superficial friction phenomenon is that in most cases its main purpose is to calculate materials of linear properties. This phenomenon is especially important for calculations of hyperelastic materials which include rubber. Nowadays, it is widely used in technology. Friction directly influences on deformations of objects made from hyperelastic materials. Energy method has been used for materials’ calculations by means of energy-based finite element of non-linear features, and iterative algorithm, named the local relaxation method. This paper presents the application of energy method for rubber ring deformations assignment including the superficial friction phenomena. Besides the observed deformations of examined element, there have been also presented the results of energy dissipation caused by friction forces work and the energy density distribution of volumetric and deviatoric strain in particular layers of the deformed ring.
PL
W pracy zaproponowano dla nieliniowo-sprężystego porowatego materiału sposób określenia związków konstytutywnych bazujący na prawie zachowania energii. Wykorzystując fizyczną i geometryczną interpretację procesu deformacji materiału wprowadzono ogólną postać funkcji gęstości energii odkształcenia. Określono także postać analityczną warunków plastyczności. Całość rozważań zilustrowano przykładem numerycznym.
EN
In this paper a way of determination of constitutive relations on the base of energy conservation principle was proposed for nonlinear elastic porous material. Using physical and geometrical interpretation of material deformation process a general form of a strain energy density function was deduced. An analytical form of plasticity conditions was also given. All considerations are illustrated by an numerical example.
EN
The paper presents application of an energy-based finite element and a local relaxation method to computer calculation of deformation of a ring made of hyperelastic material. The present study considers a surface friction mechanism. This mechanism is a physical phenomenon counteracting the relative motion of the contacting bodies. Friction causes loss of energy the dissipation of which is a result of wearing out of the bodies' surfaces and heat emission. This directly affects the shape of the deformed body. The above statements are confirmed by the results of computer calculation performed for rubber ring with rectangular cross-section. Rubber is a nearly incompressible material and, therefore, requires application of special mechanical models of the material properties as well as proper calculation methods. Implementation of energy-based finite element and local relaxation method enables studying the ring deformation with consideration of nonlinear properties of rubber and its displacements in the platering contact plane, according to the value of a friction coefficient between rubber and the plate material. Application of energy method resulted in determination of the work of friction forces and the energy density distribution of volumetric and deviatoric strain. It also simplified energy analysis of the surface friction mechanism and influence of the friction coefficient value on the process of the ring deformation.
PL
W pracy omówiono wykorzystanie energetycznego elementu skończonego oraz metody relaksacji lokalnej do komputerowych obliczeń i symulacji odkształceń pierścienia wykonanego z gumy. Analiza uwzględnia zjawisko tarcia powierzchniowego. Wyniki przeprowadzonych obliczeń potwierdzają wpływ tarcia powierzchniowego na odkształcenia pierścienia.
EN
Application of energetic finite elements and local relaxation method to numerical simulation and analysis of rubber ring's deformation was described in presented paper. The analysis took into consideration the surface friction phenomena. Results of calculations confirmed impact of surface friction on ring's deformation.
PL
W niniejszej pracy, bazując na gruncie zasady zachowania energii oraz geometrycznej interpretacji procesu odkształcenia przedstawionej w pracy [Wegner T., Matematyczne modelowanie mechanicznych właściwości materiałów. Biuletyn WAT, Vol. LIV, Nr 12, 2005, s. 5-51.] wyprowadzono wzór na funkcję gęstości energii wewnętrznej oraz zaproponowano sposób jej podziału na część objętościową i postaciową. Przyjęto także inny sposób opisu wybranych właściwości materiału bazujący na intensywności przyrostu funkcji gęstości energii wewnętrznej. Na podstawie tej koncepcji uzyskano związki pozwalające na wyznaczenie zależności odkształceń poprzecznych od wzdłużnych w procesie odciążania oraz składowych stanu odkształcenia po zakończeniu tego procesu. Całość rozważań odniesiono do jednoosiowego rozciągania i poddano weryfikacji, wykorzystując wyniki eksperymentu przeprowadzonego dla aluminium w statycznej próbie rozciągania, uzupełnionej o pomiary odkształceń poprzecznych do osi rozciągania.
EN
The physical model of the material properties, based on physical laws, was proposed by authors in this paper. The conservation energy principle was used to build strain energy density function. On the base of this principle and definition of the strain energy increment intensity, the division of energy was proposed, what is important element of this work. The conception of energy splitting into volumetric and shear parts is accepted for description of material properties. All assumptions are based on uniaxial tension test supported by transverse deformations measurements. The results of uniaxial tension test were acquired from dissertation [2], while geometrical interpretation of material deformation process was taken from paper [7]. All considerations were carried out for aluminium.
PL
W pracy opisano zastosowanie obiektowego programowania w języku C++ do metody elementów skończonych modelowanych energetycznie. Zaproponowano odporne na błędy i łatwe w stosowaniu rozwiązanie rozszerzające istniejące systemy MES o elementy modelowane energetycznie. Z wykorzystaniem funkcji energii właściwej odkształcenia oraz trójliniowych funkcji kształtu zbudowano trójwymiarowy ośmiowęzłowy element skończony typu „brick”, a następnie opracowano model strukturalny umożliwiający wykorzystanie tego elementu w systemie MES. Przyjmując istniejące rozwiązania utworzono zbiór klas ułatwiający dostosowanie rozpatrywanego zagadnienia do istniejących kodów źródłowych. W pracy wykorzystano znane pojęcia takie jak klasy stopnia swobody, węzła i elementu. Bazując na wymienionych klasach, zaproponowano klasy pochodne, rozszerzone o nowe zmienne oraz metody. Analogicznie do rozwiązań znanych z obiektowej metody programowania elementów skończonych stosowanych do obliczania lokalnych macierzy, zaproponowano ogólną funkcję obliczającą wartość energii odkształcenia elementu. W związku z tym podjęto próbę uogólnienia funkcji obliczającej w kroku iteracyjnym nową pozycję węzła, w taki sposób, aby działała ona niezależnie od liczby i rodzaju elementów, do których węzeł przynależy, materiałów, które przyjęto w celu określenia mechanicznych właściwości elementów oraz stopni swobody, które węzeł posiada. Po wykazaniu łatwości i wygody stosowania zaproponowanego rozwiązania, zaprezentowano przykład numeryczny prostego modelu hiperelastycznego ciała poddanego odkształceniom.
EN
The main purpose of this article is a presentation of the computational method of finite element based on a strain energy density function and its implementation in an object– oriented environment. The original adaptation of the nonlinear finite element is introduced. The different use of the finite element is basing on the old–style framework of classes. Properties of a material are modeled with the modified strain energy density function. The local relaxing procedure is introduced as a solving method implemented in C++ language. The application of the proposed finite element is exposed on the example of computational object made of nearly incompressible hyperelastic material.
PL
W pracy przedstawiono wyniki badań jednoosiowego rozciągania stali konstrukcyjnej zwykłej jakości o oznaczeniu ST3s. Badania prowadzono na maszynie wytrzymałościowej ZWICK. Wyznaczono zależności między działającą siłą i odkształceniem w kierunku jej działania oraz równolegle przeprowadzono pomiary odkształceń poprzecznych badanych próbek. Informacja na temat odkształceń materiału, zarówno w kierunku wzdłużnym do przyłożonego obciążenia, jak i w kierunku poprzecznym, przy różnych wartościach obciążeń, jest niezbędna do tworzenia energetycznych modeli aproksymujących właściwości mechaniczne materiału.
EN
This paper presents the results of a single-axial tension test of low-carbon regular quality steel marked ST3s. The research was conducted on a material-testing machine ZWICK. The relationship was determined between force and the strain of its direction. Simultaneously, measurements of transverse strains were carried out for examined specimens. Information on material strains, in both axial and transverse directions and for different loads, is essential to create strain energy based models, which approximate mechanical properties of material.
10
Content available remote Matematyczne modelowanie mechanicznych właściwości materiałów
PL
W pracy rozważono zagadnienia dyssypacji energii oraz stateczności równowagi wewnętrznej w odkształconym materiale, które są ściśle związane z problematyką wytrzymałościową. Właściwości materiału w procesie monotonicznego obciążania aproksymowano nieliniowym modelem matematycznym o stałym module odkształcenia objętościowego i zmiennym module odkształcenia postaciowego. Zastosowane w modelu stałe materiałowe wyznaczono w statycznej próbie rozciągania. Wykorzystując pojęcie gęstości energii odkształcenia oraz definicję stateczności, sformułowano kryterium niestateczności stanu odkształcenia materiału. Badając wypukłość funkcji energii odkształcenia postaciowego, sformułowano nowy warunek plastycznego płynięcia, który wierniej opisuje rzeczywiste zachowanie materiału w złożonym stanie naprężenia, na co wskazują badania eksperymentalne wykonane przez różnych autorów.
EN
The questions of energy dissipation and stability of inner equilibrium in a deformed material, closely related to the strength problems were considered. The material properties during the process of monotonic loading were approximated with the use of a nonlinear mathematical model of constant volumetric modulus of elasticity and varying non-dilatational modulus. Used in the model, material constants were obtained in a static tensile test. The instability criterion of strain state for the material was formulated with reference to the concept of density of strain energy and definition of stability. Examination of convexity of the function of non-dilatational strain energy enabled formulation a new plastic yield criterion. It reliably describes an actual behaviour of the material in a complex strength condition, which is evidenced by the experimental studies carried out by various authors.
PL
Do opisu właściwości fizycznych materiałów kauczukopodobnych zaproponowano rodzinę nieliniowych modeli uwzględniających ściśliwość materiału, bazujących na zmodyfikowanym modelu Mooneya. Wykorzystując nierówność Cauchy'ego udowodniono dodatnią określoność uogólnionej funkcji energii odkształcenia materiału opisanego nowym modelem, wynikające z założenia stabilności deformacji. Dla modelu V wyznaczono obszar stabilnego odkształcenia i przedstawiono go na wykresie.
EN
Taking into account material compressibility and applying modified Mooney's model, a set of non-linear models was given to describe physical properties of rubber-like materials. Using Cauchy's inequality, a positive value of a generalized strain energy function was proved. A detailed analysis of strain state limit conditions, resulting from deformation stability assumption, was made for the material described by the new model. An area of a stable deformation for the model V was calculated and presented on a chart.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.