Both qualitative and quantitative analyses play a key role in the microstructural characterization of nanobainitic steels focused on their mechanical properties. This research demonstrates various methods of microstructure analysis using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) techniques, taking into account these two approaches. The structural constituents have been qualitatively characterized using TEM and selected area electron diffraction (SAED), together with quantitative analysis based on the misorientation angle (EBSD). Besides, quantitative measurement of austenite with both blocky and film-like morphologies has been carried out. Due to the scale of nanostructured bainite, it is also important to control the thickness of bainitic ferrite and film-like austenite; hence, a method for measuring their thickness is presented. Finally, the possibility of measuring the prior-austenite grain size by the EBSD method is also demonstrated and compared with the conventional grain boundary etching method. The presented methods of qualitative and quantitative analyses form a complementary procedure for the microstructural characterization of nanoscale bainitic steels.
The article contains results of research and analyses concerning application of nanostructured bainitic steel in the form of plates for manufacturing of armour components. The presented results of examination of microstructure and properties include a wide range of laboratory experiments and industrial tests, which resulted in the achievement of the assumed functional properties. In the period of 2017-2021, a scientific and industrial consortium consisting of Łukasiewicz - Institute of Ferrous Metallurgy (leader); WITPiS, Tarnów Mechanical Works, Alchemia and Heatmasters Poland carried out a project funded by the POIR 04.01.04 programme aimed to develop the design and to manufacture an observation and protective container with a specified resistance to penetration by armour-piercing projectiles and with a lower mass of steel armouring in relation to that currently produced. The aim of the project was achieved by using armour plates made of nanostructured bainitic steel (nanobainitic), which are characterised by high resistance to high-energy impact concentrated in a small area. The technological tests carried out in the project mainly concerned the development of a new container and industrial technology of armour plates production and their application in the armour of this container. Based on the results of investigation of the semi-industrial scale material, the optimum chemical composition for industrial scale melting and casting was determined. An industrial technology for the production of plates of nano-structured bainitic steel was developed, which includes the following processes: smelting and casting, preliminary heat treatment and ingot hot processing, as well as hot rolling, final heat treatment, and surface treatment. A test batch of the material in the form of 1500×2470 mm armoured plates was fabricated under industrial conditions. The final result of the project is a container armoured with bainitic nanostructured steel plates with implementation documentation and a technology for producing armoured plates from this steel under the technical and technological conditions of domestic steel manufacturers.
PL
Artykuł zawiera wyniki badań i analiz dotyczące zastosowania stali nanostrukturalnej bainitycznej w postaci blach arkuszowych do wytwarzania elementów opancerzenia. Przedstawione wyniki badań mikrostruktury i właściwości obejmują szeroki zakres eksperymentów laboratoryjnych i badań przemysłowych, w wyniku których osiągnięto założone właściwości użytkowe. W latach 2017-2021 konsorcjum naukowo-przemysłowe w składzie: Łukasiewicz - Instytut Metalurgii Żelaza (lider), Wojskowy Instytut Techniki Pancernej i Samochodowej (WITPiS), Zakłady Mechaniczne Tarnów S.A. (ZMT), Alchemia S.A. i Heatmasters Poland sp. z o.o. zrealizowało projekt finansowany z programu POIR 04.01.04, którego celem było opracowanie konstrukcji i wykonanie kontenera obserwacyjno-obronnego o określonej odporności na przebicie pociskami przeciwpancernymi oraz o niższej masie opancerzenia stalowego w odniesieniu do obecnie wytwarzanego. Cel projektu osiągnięto przez zastosowanie blach pancernych ze stali nanostrukturalnej bainitycznej (nanobainitycznej-NBA), które charakteryzuje wysoka odporność na skoncentrowane na małym obszarze wysokoenergetyczne oddziaływania udarowe. Zrealizowane badania przemysłowe w projekcie dotyczyły w głównej mierze opracowania konstrukcji nowego kontenera oraz przemysłowej technologii wytwarzania blach pancernych i ich zastosowania w opancerzeniu tego kontenera. Na podstawie wyników badań materiału wytworzonego w skali półprzemysłowej ustalono optymalny skład chemiczny dla wytopów przemysłowych. Opracowano przemysłową technologię wytwarzania blach ze stali nanostrukturalnej bainitycznej, która obejmuje następujące procesy: wytapianie i odlewanie, wstępną obróbkę cieplną i przetwarzanie wlewków oraz walcowanie na gorąco blach i finalną obróbkę cieplną oraz obróbkę powierzchniową. Wykonano testową partię materiału w warunkach przemysłowych w postaci pancernych blach arkuszowych o wymiarach 1500×2470 mm. Finalnym rezultatem projektu jest kontener opancerzony za pomocą blach ze stali nanostrukturalnej bainitycznej z dokumentacją wdrożeniową oraz technologia wytwarzania blach pancernych z tej stali w warunkach techniczno-technologicznych krajowych wytwórców wyrobów stalowych.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Advanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.
The study is a continuation of the development of material characteristics in order to expand the range of products for the production of which nanostructured bainitic steels can be used. The tests included measurement of dynamic properties important in the material qualification process for firing tests and for other applications requiring dynamic wear resistance. The novelty of the implemented development of the innovative grade of nanostructured steel and the technology of manufacturing products - including armour systems containing perforated panels made of this grade of steel, consisted in developing the basics of dynamic hardness measurement methods and dynamic indentation tests using a Gleeble simulator.
PL
W pracy kontynuowano opracowywanie charakterystyk materiałowych w celu poszerzenia asortymentu wyrobów, do wytwarzania których można zastosować stale nanostrukturalne bainityczne. Badania obejmowały pomiary właściwości dynamicznych istotnych w procesie kwalifikacji materiału do testów ostrzałem oraz do innych zastosowań wymagających odporności na zużycie dynamiczne. Nowość realizowanego rozwoju innowacyjnego gatunku stali nanostrukturalnej oraz technologii wytwarzania wyrobów - w tym systemów opancerzenia zawierających blachy perforowane z tego gatunku stali, polegała na opracowaniu podstaw metody pomiaru twardości dynamicznej oraz testów wgłębiania dynamicznego z zastosowaniem symulatora Gleeble.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.